11 KiB
11 KiB
import pandas as pd
import numpy as np
import csv
import os.path
import shutil
import torch
from tqdm import tqdm
from itertools import islice
from sklearn.model_selection import train_test_split
from torchtext.vocab import Vocab
from collections import Counter
from nltk.tokenize import word_tokenize
import gensim.downloader as api
from gensim.models.word2vec import Word2Vec
C:\Users\grzyb\anaconda3\lib\site-packages\gensim\similarities\__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning. warnings.warn(msg)
class NERModel(torch.nn.Module):
def __init__(self,):
super(NERModel, self).__init__()
self.emb = torch.nn.Embedding(23628,200)
self.fc1 = torch.nn.Linear(600,9)
def forward(self, x):
x = self.emb(x)
x = x.reshape(600)
x = self.fc1(x)
return x
def process_output(lines):
result = []
for line in lines:
last_label = None
new_line = []
for label in line:
if(label != "O" and label[0:2] == "I-"):
if last_label == None or last_label == "O":
label = label.replace('I-', 'B-')
else:
label = "I-" + last_label[2:]
last_label = label
new_line.append(label)
x = (" ".join(new_line))
result.append(" ".join(new_line))
return result
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
def predict(input_tokens, labels):
results = []
for i in range(len(input_tokens)):
line_results = []
for j in range(1, len(input_tokens[i]) - 1):
x = input_tokens[i][j-1: j+2].to(device_gpu)
predicted = ner_model(x.long())
result = torch.argmax(predicted)
label = labels[result]
line_results.append(label)
results.append(line_results)
return results
train = pd.read_csv('train/train.tsv.xz', sep='\t', names=['a', 'b'])
labels = ['O','B-LOC', 'I-LOC','B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER']
train["a"]=train["a"].apply(lambda x: [labels.index(y) for y in x.split()])
train["b"]=train["b"].apply(lambda x: x.split())
vocab = build_vocab(train['b'])
tensors = []
for sent in train["b"]:
sent_tensor = torch.tensor(())
for word in sent:
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
sent_tensor = torch.cat((sent_tensor, temp))
tensors.append(sent_tensor)
torch.cuda.get_device_name(0)
'NVIDIA GeForce RTX 2060'
device_gpu = torch.device("cuda:0")
ner_model = NERModel().to(device_gpu)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(ner_model.parameters())
train_labels = labels_process(train['a'])
train_tokens_ids = data_process(train['b'])
train_tensors = [torch.cat((token, tensors[i])) for i, token in enumerate(train_tokens_ids)]
for epoch in range(5):
acc_score = 0
prec_score = 0
selected_items = 0
recall_score = 0
relevant_items = 0
items_total = 0
ner_model.train()
for i in range(len(train_labels)):
for j in range(1, len(train_labels[i]) - 1):
X = train_tensors[i][j - 1: j + 2].to(device_gpu)
Y = train_labels[i][j: j + 1].to(device_gpu)
Y_predictions = ner_model(X.long())
acc_score += int(torch.argmax(Y_predictions) == Y)
if torch.argmax(Y_predictions) != 0:
selected_items += 1
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
prec_score += 1
if Y.item() != 0:
relevant_items += 1
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
recall_score += 1
items_total += 1
optimizer.zero_grad()
loss = criterion(Y_predictions.unsqueeze(0), Y)
loss.backward()
optimizer.step()
precision = prec_score / selected_items
recall = recall_score / relevant_items
f1_score = (2 * precision * recall) / (precision + recall)
print(f'epoch: {epoch}')
print(f'f1: {f1_score}')
print(f'acc: {acc_score / items_total}')
epoch: 0 f1: 0.6310260230881535 acc: 0.9099004714510215 epoch: 1 f1: 0.7977381727751791 acc: 0.9539025667888947 epoch: 2 f1: 0.8635445687583837 acc: 0.9699162783858546 epoch: 3 f1: 0.9047002002591589 acc: 0.9794417946385082 epoch: 4 f1: 0.9300697243387956 acc: 0.9852774944170274
def create_tensors_list(data):
tensors = []
for sent in data["a"]:
sent_tensor = torch.tensor(())
for word in sent:
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
sent_tensor = torch.cat((sent_tensor, temp))
tensors.append(sent_tensor)
return tensors
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['a'])
dev["a"] = dev["a"].apply(lambda x: x.split())
dev_tokens_ids = data_process(dev["a"])
dev_extra_tensors = create_tensors_list(dev)
dev_tensors = [torch.cat((token, dev_extra_tensors[i])) for i, token in enumerate(dev_tokens_ids)]
results = predict(dev_tensors, labels)
results_processed = process_output(results)
with open("dev-0/out.tsv", "w") as f:
for line in results_processed:
f.write(line + "\n")
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['a'])
test["a"] = test["a"].apply(lambda x: x.split())
test_tokens_ids = data_process(test["a"])
test_extra_tensors = create_tensors_list(test)
test_tensors = [torch.cat((token, test_extra_tensors[i])) for i, token in enumerate(test_tokens_ids)]
results = predict(test_tensors, labels)
results_processed = process_output(results)
with open("test-A/out.tsv", "w") as f:
for line in results_processed:
f.write(line + "\n")
model_path = "seq_labeling.model"
torch.save(ner_model.state_dict(), model_path)