14 KiB
- Zanurzenia słów
Zanurzenia słów
Słabości $n$-gramowych modeli języka
Podstawowa słabość $n$-gramowych modeli języka polega na tym, że każde słowo jest traktowane w izolacji. W, powiedzmy, bigramowym modelu języka każda wartość $P(w_2|w_1)$ jest estymowana osobno, nawet dla — w jakimś sensie podobnych słów. Na przykład:
- $P(\mathit{zaszczekał}|\mathit{pies})$, $P(\mathit{zaszczekał}|\mathit{jamnik})$, $P(\mathit{zaszczekał}|\mathit{wilczur})$ są estymowane osobno,
- $P(\mathit{zaszczekał}|\mathit{pies})$, $P(\mathit{zamerdał}|\mathit{pies})$, $P(\mathit{ugryzł}|\mathit{pies})$ są estymowane osobno,
- dla każdej pary $u$, $v$, gdzie $u$ jest przyimkiem (np. dla), a $v$ — osobową formą czasownika (np. napisał) model musi się uczyć, że $P(v|u)$ powinno mieć bardzo niską wartość.
Podobieństwo słów jako sposób na słabości $n$-gramowych modeli języka?
Intuicyjnie wydaje się, że potrzebujemy jakiegoś sposobu określania podobieństwa słów, tak aby w naturalny sposób, jeśli słowa $u$ i $u'$ oraz $v$ i $v'$ są bardzo podobne, wówczas $P(u|v) \approx P(u'|v')$.
Można wskazać trzy sposoby określania podobieństwa słów: odległość edycyjna Lewensztajna, hierarchie słów i odległość w przestrzeni wielowymiarowej.
Odległość Lewensztajna
Słowo dom ma coś wspólnego z domem, domkiem, domostwem, domownikami, domowym i udomowieniem (?? — tu już można mieć wątpliwości). Więc może oprzeć podobieństwa na powierzchownym podobieństwie?
Możemy zastosować tutaj odległość Lewensztajna, czyli minimalną liczbę operacji edycyjnych, które są potrzebne, aby przekształcić jedno słowo w drugie. Zazwyczaj jako elementarne operacje edycyjne definiuje się:
- usunięcie znaku,
- dodanie znaku,
- zamianu znaku.
Na przykład odległość edycyjna między słowami domkiem i domostwem wynosi 4: zamiana k na o, i na s, dodanie t, dodanie w.
import Levenshtein
Levenshtein.distance('domkiem', 'domostwem')
4
Niestety, to nie jest tak, że słowa są podobne wtedy i tylko wtedy, gdy wyglądają podobnie:
- tapet nie ma nic wspólnego z tapetą,
- słowo sowa nie wygląda jak ptak, puszczyk, jastrząb, kura itd.
Powierzchowne podobieństwo słów łączy się zazwyczaj z relacjami fleksyjnymi i słowotwórczymi (choć też nie zawsze, por. np. pary słów będące przykładem supletywizmu: człowiek-ludzie, brać-zwiąć, rok-lata). A co z innymi własnościami wyrazów czy raczej bytów przez nie denotowanych (słowa oznaczające zwierzęta należące do gromady ptaków chcemy traktować jako, w jakiejś mierze przynajmnie, podobne)?
Dodajmy jeszcze, że w miejsce odległości Lewensztajna warto czasami używać podobieństwa Jaro-Winklera, które mniejszą wagę przywiązuje do zmian w końcówkach wyrazów:
import Levenshtein
Levenshtein.jaro_winkler('domu', 'domowy')
Levenshtein.jaro_winkler('domowy', 'maskowy')
0.6626984126984127
Klasy i hierarchie słów
Innym sposobem określania podobieństwa między słowami jest zdefiniowanie klas słów. Słowa należące do jednej klasy będą podobne, do różnych klas — niepodobne.
Klasy gramatyczne
Klasy mogą odpowiadać standardowym kategoriom gramatycznym znanym z językoznawstwa, na przykład częściom mowy (rzeczownik, przymiotnik, czasownik itd.). Wiele jest niejednoznacznych jeśli chodzi o kategorię części mowy:
- powieść — rzeczownik czy czasownik?
- komputerowi — rzeczownik czy przymiotnik?
- lecz — spójnik, czasownik (!) czy rzeczownik (!!)?
Oznacza to, że musimy dysponować narzędziem, które pozwala automatycznie, na podstawie kontekstu, tagować tekst częściami mowy (ang. POS tagger). Takie narzędzia pozwalają na osiągnięcie wysokiej dokładności, niestety zawsze wprowadzają jakieś błędy, które mogą propagować się dalej.
Klasy indukowane automatycznie
Zamiast z góry zakładać klasy wyrazów można zastosować metody uczenia nienadzorowanego (podobne do analizy skupień) w celu wyindukowanie automatycznie klas (tagów) z korpusu.
Użycie klas słów w modelu języka
Najprostszy sposób uwzględnienia klas słów w $n$-gramowym modelowaniu języka polega stworzeniu dwóch osobnych modeli:
- tradycyjnego modelu języka $M_W$ operującego na słowach,
- modelu języka $M_T$ wyuczonego na klasach słów (czy to częściach mowy, czy klasach wyindukowanych automatycznie).
Zauważmy, że rząd modelu $M_T$ ($n_T$) może dużo większy niż rząd modelu $M_W$ ($n_W$) — klas będzie dużo mniej niż wyrazów, więc problem rzadkości danych jest dużo mniejszy i można rozpatrywać dłuższe $n$-gramy.
Dwa modele możemy połączyć za pomocą prostej kombinacji liniowej sterowanej hiperparametrem $\lambda$:
$$P(w_i|w_{i-n_T}+1\ldots w_{i-1}) = \lambda P_{M_T}(w_i|w_{i-n_W}+1\ldots w_{i-1}) + (1 - \lambda) P_{M_W}(w_i|w_{i-n_T}+1\ldots w_{i-1}).$$
Hierarchie słów
Zamiast płaskiej klasyfikacji słów można zbudować hierarchię słów czy pojęć. Taka hierarchia może dotyczyć właściwości gramatycznych (na przykład rzeczownik w liczbie pojedynczej w dopełniaczu będzie podklasą rzeczownika) lub własności denotowanych bytów.
Niekiedy dość łatwo stworzyć hierarchie (taksonomię) pojęć. Na przykład jamnik jest rodzajem psa (słowo jamnik jest hiponimem słowa pies, zaś słowo pies hiperonimem słowa jamnik), pies — ssaka, ssak — zwierzęcia, zwierzę — organizmu żywego, organizm — bytu materialnego.
Analityczny język Johna Wilkinsa
Już od dawna filozofowie myśleli o stworzenie języka uniwersalnego, w którym hierarchia bytów jest ułożona w „naturalny” sposób.
Przykładem jest angielski uczony John Wilkins (1614-1672). W dziele An Essay towards a Real Character and a Philosophical Language zaproponował on rozbudowaną hierarchię bytów.
Słowosieci
Współczesnym odpowiednik hierarchii Wilkinsa są słowosieci (ang. /wordnets). Przykłady:
- dla języka polskiego: Słowosieć,
- dla języka angielskiego: Princeton Wordnet (i Słowosieć!)
W praktyce stosowalność słowosieci okazała się zaskakująco ograniczona. Większy przełom w przetwarzaniu języka naturalnego przyniosły wielowymiarowe reprezentacje słów, inaczej: zanurzenia słów.
„Wymiary” słów
Moglibyśmy zanurzyć (ang. embed) w wielowymiarowej przestrzeni, tzn. zdefiniować odwzorowanie $E \colon V \rightarrow \mathcal{R}^m$ dla pewnego $m$ i określić taki sposób estymowania prawdopodobieństw $P(u|v)$, by dla par $E(v)$ i $E(v')$ oraz $E(u)$ i $E(u')$ znajdujących się w pobliżu (według jakiejś metryki odległości, na przykład zwykłej odległości euklidesowej):
$$P(u|v) \approx P(u'|v').$$
$E(u)$ nazywamy zanurzeniem (embeddingiem) słowa.
Wymiary określone z góry?
Można by sobie wyobrazić, że $m$ wymiarów mogłoby być z góry określonych przez lingwistę. Wymiary te byłyby związane z typowymi „osiami” rozpatrywanymi w językoznawstwie, na przykład:
- czy słowo jest wulgarne, pospolite, potoczne, neutralne czy książkowe?
- czy słowo jest archaiczne, wychodzące z użycia czy jest neologizmem?
- czy słowo dotyczy kobiet, czy mężczyzn (w sensie rodzaju gramatycznego i/lub socjolingwistycznym)?
- czy słowo jest w liczbie pojedynczej czy mnogiej?
- czy słowo jest rzeczownikiem czy czasownikiem?
- czy słowo jest rdzennym słowem czy zapożyczeniem?
- czy słowo jest nazwą czy słowem pospolitym?
- czy słowo opisuje konkretną rzecz czy pojęcie abstrakcyjne?
- …
W praktyce okazało się jednak, że lepiej, żeby komputer uczył się sam możliwych wymiarów — z góry określamy tylko $m$ (liczbę wymiarów).
Bigramowy model języka oparty na zanurzeniach
Zbudujemy teraz najprostszy model język oparty na zanurzeniach. Będzie to właściwie najprostszy neuronowy model języka, jako że zbudowany model można traktować jako prostą sieć neuronową.
Słownik
W typowym neuronowym modelu języka rozmiar słownika musi być z góry
ograniczony. Zazwyczaj jest to liczba rzędu kilkudziesięciu wyrazów —
po prostu będziemy rozpatrywać $|V|$ najczęstszych wyrazów, pozostałe zamienimy
na specjalny token <unk>
reprezentujący nieznany (unknown) wyraz.
Aby utworzyć taki słownik użyjemy gotowej klasy Vocab
z pakietu torchtext:
from itertools import islice
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
def get_word_lines_from_file(file_name):
with open(file_name, 'r') as fh:
for line in fh:
yield get_words_from_line(line)
vocab_size = 20000
vocab = build_vocab_from_iterator(
get_word_lines_from_file('opensubtitlesA.pl.txt'),
max_tokens = vocab_size,
specials = ['<unk>'])
vocab['jest']
16
len(vocab)
20000
Definicja sieci
Naszą prostą sieć neuronową zaimplementujemy używając frameworku PyTorch.
from torch import nn
import torch
embed_size = 100
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size)
vocab.set_default_index(vocab['<unk>'])
ixs = torch.tensor(vocab.forward(['mieszkam', 'w', 'londynie']))
out = model(ixs)
out.size()
torch.Size([3, 20000])
Teraz wyuczmy model. Wpierw tylko potasujmy nasz plik:
shuf < opensubtitlesA.pl.txt > opensubtitlesA.pl.shuf.txt
from torch.utils.data import IterableDataset
import itertools
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
train_dataset = Bigrams('opensubtitlesA.pl.shuf.txt', vocab_size)
from torch.utils.data import DataLoader
next(iter(train_dataset))
(2, 19922)
from torch.utils.data import DataLoader
next(iter(DataLoader(train_dataset, batch_size=5)))
[tensor([ 2, 19922, 114, 888, 1152]), tensor([19922, 114, 888, 1152, 3])]
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=8000)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model1.bin')
None
vocab = train_dataset.vocab
ixs = torch.tensor(vocab.forward(['jest', 'mieszkam', 'w', 'londynie'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
list(zip(top_words, top_indices, top_probs))
[('jorku', 1079, 0.41101229190826416), ('.', 3, 0.07469522953033447), ('<unk>', 0, 0.04370327666401863), (',', 4, 0.023186953738331795), ('…', 15, 0.0091575738042593), ('?', 6, 0.008711819536983967), ('tym', 30, 0.0047738500870764256), ('to', 7, 0.004259662237018347), ('do', 17, 0.004140778910368681), ('w', 10, 0.003930391278117895)]