paranormal-or-skeptic-ISI-p.../LogReg.py

112 lines
3.9 KiB
Python
Raw Normal View History

2021-05-22 18:52:56 +02:00
import pandas as pd
import numpy as np
import torch
from nltk.tokenize import word_tokenize
import gensim.downloader as api
# Wczytanie X i Y do Train oraz X do Dev i Test
X_train = pd.read_table('train/in.tsv', sep='\t', error_bad_lines=False, quoting=3, header=None, names=['content', 'id'], usecols=['content'])
y_train = pd.read_table('train/expected.tsv', sep='\t', error_bad_lines=False, quoting=3, header=None, names=['label'])
X_dev = pd.read_table('dev-0/in.tsv', sep='\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content'])
X_test = pd.read_table('test-A/in.tsv', sep='\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content'])
# lowercase-ing zbiorów
# https://www.datacamp.com/community/tutorials/case-conversion-python
X_train = X_train.content.str.lower()
X_dev = X_dev.content.str.lower()
X_test = X_test.content.str.lower()
y_train = y_train['label'] #Df do Series?
# tokenizacja zbiorów
#https://www.nltk.org/_modules/nltk/tokenize.html
X_train = [word_tokenize(doc) for doc in X_train]
X_dev = [word_tokenize(doc) for doc in X_dev]
X_test = [word_tokenize(doc) for doc in X_test]
# word2vec zgodnie z poradą Pana Jakuba
# https://radimrehurek.com/gensim/auto_examples/howtos/run_downloader_api.html
# https://www.kaggle.com/kstathou/word-embeddings-logistic-regression
w2v = api.load('word2vec-google-news-300')
def document_vector(doc):
"""Create document vectors by averaging word vectors. Remove out-of-vocabulary words."""
return np.mean([w2v[w] for w in doc if w in w2v] or [np.zeros(300)], axis=0)
X_train = [document_vector(doc) for doc in X_train]
X_dev = [document_vector(doc) for doc in X_dev]
X_test = [document_vector(doc) for doc in X_test]
#Sieć neuronowa z ćwiczeń 8
#https://git.wmi.amu.edu.pl/filipg/aitech-eks-pub/src/branch/master/cw/08_regresja_logistyczna.ipynb
class NeuralNetwork(torch.nn.Module):
def __init__(self, hidden_size):
super(NeuralNetwork, self).__init__()
self.l1 = torch.nn.Linear(300, hidden_size) #Korzystamy z word2vec-google-news-300 który ma zawsze na wejściu wymiar 300
self.l2 = torch.nn.Linear(hidden_size, 1)
def forward(self, x):
x = self.l1(x)
x = torch.relu(x)
x = self.l2(x)
x = torch.sigmoid(x)
return x
model = NeuralNetwork(600)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)
batch_size = 15
# Trening modelu z ćwiczeń 8
#https://git.wmi.amu.edu.pl/filipg/aitech-eks-pub/src/branch/master/cw/08_regresja_logistyczna.ipynb
for epoch in range(5):
model.train()
for i in range(0, y_train.shape[0], batch_size):
X = X_train[i:i+batch_size]
X = torch.tensor(X)
y = y_train[i:i+batch_size]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1,1)
outputs = model(X.float())
loss = criterion(outputs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_dev = []
y_test = []
#Predykcje
#model.eval() will notify all your layers that you are in eval mode
model.eval()
#torch.no_grad() impacts the autograd engine and deactivate it. It will reduce memory usage and speed up
with torch.no_grad():
for i in range(0, len(X_dev), batch_size):
X = X_dev[i:i+batch_size]
X = torch.tensor(X)
outputs = model(X.float())
y = (outputs > 0.5)
y_dev.extend(y)
for i in range(0, len(X_test), batch_size):
X = X_test[i:i+batch_size]
X = torch.tensor(X)
outputs = model(X.float())
y = (outputs > 0.5)
y_test.extend(y)
#Wygenerowanie plików outputowych
y_dev = np.asarray(y_dev, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
y_dev_df = pd.DataFrame({'label':y_dev})
y_test_df = pd.DataFrame({'label':y_test})
y_dev_df.to_csv(r'dev-0/out.tsv', sep='\t', index=False, header=False)
y_test_df.to_csv(r'test-A/out.tsv', sep='\t', index=False, header=False)