Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
3f33af372f | ||
|
0a9af20404 |
28
app.py
Normal file
28
app.py
Normal file
@ -0,0 +1,28 @@
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import numpy as np
|
||||
|
||||
|
||||
def makePrediction(filePath):
|
||||
with open(filePath + 'in.tsv') as input:
|
||||
predictData = input.readlines()
|
||||
pred = model.predict(predictData)
|
||||
with open(filePath + "out.tsv", "w") as result:
|
||||
for prediction in pred:
|
||||
result.write(str(prediction) + '\n')
|
||||
|
||||
|
||||
expectedTraining = open('./train/expected.tsv').readlines()
|
||||
inTraining = open('./train/in.tsv').readlines()
|
||||
|
||||
afterTransform = LabelEncoder().fit_transform(expectedTraining)
|
||||
pipeline = Pipeline(
|
||||
steps=[('tfidf', TfidfVectorizer()), ('naive-bayes', MultinomialNB())])
|
||||
|
||||
model = pipeline.fit(inTraining, afterTransform)
|
||||
|
||||
|
||||
makePrediction('./dev-0/')
|
||||
makePrediction('./test-A/')
|
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user