14 KiB
14 KiB
#!/usr/bin/env python
# coding: utf-8
import lzma
import gensim.models
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
X_train = lzma.open("train/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
y_train = open('train/expected.tsv').readlines()
X_dev0 = lzma.open("dev-0/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
y_expected_dev0 = open("dev-0/expected.tsv", "r").readlines()
X_test = lzma.open("test-A/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
X_train = [line.split() for line in X_train]
X_dev0 = [line.split() for line in X_dev0]
X_test = [line.split() for line in X_test]
def tagged_document(list_of_list_of_words):
for i, list_of_words in enumerate(list_of_list_of_words):
yield gensim.models.doc2vec.TaggedDocument(list_of_words, [i])
data_training = list(tagged_document(X_train))
model = gensim.models.doc2vec.Doc2Vec(vector_size=1000)
model.build_vocab(data_training)
X_train_d2v = [model.infer_vector(line) for line in X_train]
X_dev0_d2v = [model.infer_vector(line) for line in X_dev0]
X_test_d2v = [model.infer_vector(line) for line in X_test]
y_train = np.array([int(i) for i in y_train])
y_expected_dev0 = np.array([int(i) for i in y_expected_dev0])
class Net(nn.Module):
"""W PyTorchu tworzenie sieci neuronowej
polega na zdefiniowaniu klasy, która dziedziczy z nn.Module.
"""
def __init__(self):
super().__init__()
# Warstwy splotowe
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
# Warstwy dropout
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
# Warstwy liniowe
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
"""Definiujemy przechodzenie "do przodu" jako kolejne przekształcenia wejścia x"""
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(model, device, train_loader, optimizer, epoch, log_interval, dry_run):
"""Uczenie modelu"""
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)
optimizer.zero_grad() # wyzerowanie gradientu
output = model(data) # przejście "do przodu"
loss = F.nll_loss(output, target) # obliczenie funkcji kosztu
loss.backward() # propagacja wsteczna
optimizer.step() # krok optymalizatora
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if dry_run:
break
def test(model, device, test_loader):
"""Testowanie modelu"""
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)
output = model(data) # przejście "do przodu"
test_loss += F.nll_loss(output, target, reduction='sum').item() # suma kosztów z każdego batcha
pred = output.argmax(dim=1, keepdim=True) # predykcja na podstawie maks. logarytmu prawdopodobieństwa
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset) # obliczenie kosztu na zbiorze testowym
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def run(
batch_size=64,
test_batch_size=1000,
epochs=14,
lr=1.0,
gamma=0.7,
no_cuda=False,
dry_run=False,
seed=1,
log_interval=10,
save_model=False,
):
"""Main training function.
Arguments:
batch_size - wielkość batcha podczas uczenia (default: 64),
test_batch_size - wielkość batcha podczas testowania (default: 1000)
epochs - liczba epok uczenia (default: 14)
lr - współczynnik uczenia (learning rate) (default: 1.0)
gamma - współczynnik gamma (dla optymalizatora) (default: 0.7)
no_cuda - wyłącza uczenie na karcie graficznej (default: False)
dry_run - szybko ("na sucho") sprawdza pojedyncze przejście (default: False)
seed - ziarno generatora liczb pseudolosowych (default: 1)
log_interval - interwał logowania stanu uczenia (default: 10)
save_model - zapisuje bieżący model (default: False)
"""
use_cuda = no_cuda and torch.cuda.is_available()
torch.manual_seed(seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': batch_size}
test_kwargs = {'batch_size': test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=lr)
scheduler = StepLR(optimizer, step_size=1, gamma=gamma)
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch, log_interval, dry_run)
test(model, device, test_loader)
scheduler.step()
if save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
0.003825023
FEATURES = 1000
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEATURES,500)
self.fc2 = torch.nn.Linear(500,1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
nn_model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
def get_loss_acc(model, X_dataset, Y_dataset):
loss_score = 0
acc_score = 0
items_total = 0
model.eval()
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
X = np.array(X_dataset[i:i+BATCH_SIZE])
X = torch.tensor(X)
Y = Y_dataset[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
loss = criterion(Y_predictions, Y)
loss_score += loss.item() * Y.shape[0]
return (loss_score / items_total), (acc_score / items_total)
for epoch in range(5):
loss_score = 0
acc_score = 0
items_total = 0
nn_model.train()
for i in range(0, y_train.shape[0], BATCH_SIZE):
X = np.array(X_train_d2v[i:i+BATCH_SIZE])
X = torch.tensor(X)
Y = y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = nn_model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
display(epoch)
display(get_loss_acc(nn_model, X_train_d2v, y_train))
display(get_loss_acc(nn_model, X_dev0_d2v, y_expected_dev0))