tau-2020-pytorch-tutorial/pytorch12.py

124 lines
3.6 KiB
Python
Raw Normal View History

#!/usr/bin/python3
# https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
import sys
import torch
from torch import nn, optim
nb_of_char_codes = 128 + 2
SOS_token_id = 128 # start of sentence
EOS_token_id = 129 # end of sentence
2021-01-18 20:45:46 +01:00
MAX_LENGTH = 20
hidden_size = 32
step = 200
device = torch.device('cpu')
f = open('eng-fra.txt')
def char_source():
for line in f:
s, t = line.rstrip('\n').split('\t')
s_list = []
t_list = []
for c in s:
c_code = ord(c)
if c_code < nb_of_char_codes:
s_list.append(ord(c))
for c in t:
c_code = ord(c)
if c_code < nb_of_char_codes:
t_list.append(ord(c))
yield s_list, t_list
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self):
return torch.zeros(1,1, self.hidden_size, device=device)
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input)
output = torch.nn.functional.relu(output)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
encoder = EncoderRNN(nb_of_char_codes, hidden_size).to(device)
decoder = DecoderRNN(hidden_size, nb_of_char_codes).to(device)
criterion = nn.NLLLoss().to(device)
2021-01-18 20:45:46 +01:00
optimizer = optim.Adam((list(encoder.parameters()) + list(decoder.parameters())))
counter = 0
losses = []
for s,t in char_source():
counter += 1
encoder.zero_grad()
decoder.zero_grad()
x = torch.tensor(s, dtype=torch.long, device=device)
encoder_hidden = encoder.initHidden()
2021-01-18 20:45:46 +01:00
encoder_output = torch.zeros(MAX_LENGTH, hidden_size, device=device)
for i in range(x.shape[0]):
output, encoder_hidden = encoder(x[i].unsqueeze(0).unsqueeze(0), encoder_hidden)
encoder_output[i] = output[0,0]
decoder_hidden = encoder_hidden
decoder_input = torch.tensor([[SOS_token_id]], device=device)
t.append(EOS_token_id)
y = torch.tensor(t, dtype=torch.long, device=device)
loss = 0
output_string = ''
for di in range(y.shape[0]):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden)
topv, topi = decoder_output.topk(1)
decoder_input = topi.detach() # detach from history as input
output_string += chr(topi)
loss += criterion(decoder_output, y[di].unsqueeze(0))
if chr(topi) == EOS_token_id:
break
losses.append(loss.item())
if counter % step == 0:
# print(counter, end='\t')
avg_loss = sum(losses)/len(losses)
print(f"{counter}: {avg_loss}")
losses = []
print('IN :\t', ''.join([chr(a) for a in s]))
print('EXP:\t', ''.join([chr(a) for a in t]))
print('OUT:\t', output_string)
loss.backward()
optimizer.step()