temporal t5
This commit is contained in:
commit
d27c288bc4
11
1-process.sh
Normal file
11
1-process.sh
Normal file
@ -0,0 +1,11 @@
|
||||
head -n 20000 challenging-america-full-train-dump-2021-10-26.tsv > dev.txt
|
||||
tail -n 317833 challenging-america-full-train-dump-2021-10-26.tsv > train.txt
|
||||
|
||||
cat dev.txt | parallel --pipe -j 50 python append-date.py '{#}' > dev-splitted.txt
|
||||
cat train.txt | parallel --pipe -j 50 python append-date.py '{#}' > train-splitted.txt
|
||||
|
||||
|
||||
shuf dev-splitted.txt > dev-splitted-shuf.txt
|
||||
shuf train-splitted.txt > train-splitted-shuf.txt
|
||||
|
||||
rm dev-splitted.txt train-splitted.txt dev-splitted.txt train-splitted.txt
|
31
2_tokenizer.py
Normal file
31
2_tokenizer.py
Normal file
@ -0,0 +1,31 @@
|
||||
import datasets
|
||||
from t5_tokenizer_model import SentencePieceUnigramTokenizer
|
||||
|
||||
|
||||
vocab_size = 32_000
|
||||
input_sentence_size = None
|
||||
|
||||
# Initialize a dataset
|
||||
dataset = datasets.load_dataset('text', data_files='train-splitted-shuf.txt', split='train')
|
||||
|
||||
tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
|
||||
|
||||
|
||||
# Build an iterator over this dataset
|
||||
def batch_iterator(input_sentence_size=None):
|
||||
if input_sentence_size is None:
|
||||
input_sentence_size = len(dataset)
|
||||
batch_length = 100
|
||||
for i in range(0, input_sentence_size, batch_length):
|
||||
yield dataset[i: i + batch_length]["text"]
|
||||
|
||||
|
||||
# Train tokenizer
|
||||
tokenizer.train_from_iterator(
|
||||
iterator=batch_iterator(input_sentence_size=input_sentence_size),
|
||||
vocab_size=vocab_size,
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
# Save files to disk
|
||||
tokenizer.save("./temporal-t5-base/tokenizer.json")
|
6
3_create_config.py
Normal file
6
3_create_config.py
Normal file
@ -0,0 +1,6 @@
|
||||
from transformers import T5Config
|
||||
|
||||
from transformers import PreTrainedTokenizerFast
|
||||
tokenizer = PreTrainedTokenizerFast(tokenizer_file='./temporal-t5-base/tokenizer.json')
|
||||
config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.vocab_size)
|
||||
config.save_pretrained("./temporal-t5-base")
|
19
4_train_model.sh
Normal file
19
4_train_model.sh
Normal file
@ -0,0 +1,19 @@
|
||||
export TRANSFORMERS_CACHE=/mnt/gpu_data1/kubapok/cache
|
||||
python run_t5_mlm_flax.py \
|
||||
--output_dir="./temporal-t5-base" \
|
||||
--model_type="t5" \
|
||||
--config_name="./temporal-t5-base" \
|
||||
--tokenizer_name="./temporal-t5-base" \
|
||||
--train_file="./train-splitted-shuf.txt" \
|
||||
--validation_file="./dev-splitted-shuf.txt" \
|
||||
--max_seq_length="512" \
|
||||
--per_device_train_batch_size="32" \
|
||||
--per_device_eval_batch_size="32" \
|
||||
--adafactor \
|
||||
--learning_rate="0.005" \
|
||||
--weight_decay="0.001" \
|
||||
--warmup_steps="2000" \
|
||||
--overwrite_output_dir \
|
||||
--logging_steps="500" \
|
||||
--save_steps="10000" \
|
||||
--eval_steps="2500" \
|
21
append-date.py
Normal file
21
append-date.py
Normal file
@ -0,0 +1,21 @@
|
||||
import datetime
|
||||
import sys
|
||||
|
||||
for line_in in sys.stdin:
|
||||
fields = line_in.rstrip('\n').split('\t')
|
||||
date, text = fields[2], fields[-1]
|
||||
d = datetime.datetime.strptime(date.split(' ')[0],"%Y-%m-%d")
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
day_of_month = str(d.day)
|
||||
month = str(d.month)
|
||||
year = str(d.year)
|
||||
weekday = str(d.weekday())
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
text = text.replace('-\\n','').replace('\\n',' ')
|
||||
text_splitted = text.split(' ')
|
||||
for i in range(0,len(text_splitted),200):
|
||||
text_chunk = ' '.join(text_splitted[i:i+200])
|
||||
text_to_write = 'year: ' + year +' month: ' + month + ' day: ' + day_of_month + ' weekday: ' + weekday + ' '+ text_chunk
|
||||
print(text_to_write)
|
||||
|
||||
|
992
run_t5_mlm_flax.py
Executable file
992
run_t5_mlm_flax.py
Executable file
@ -0,0 +1,992 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Pretraining the library models for T5-like span-masked language modeling on a text file or a dataset.
|
||||
|
||||
Here is the full list of checkpoints on the hub that can be pretrained by this script:
|
||||
https://huggingface.co/models?filter=t5
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import asdict, dataclass, field
|
||||
|
||||
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
import flax
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
from flax import jax_utils, traverse_util
|
||||
from flax.jax_utils import pad_shard_unpad
|
||||
from flax.training import train_state
|
||||
from flax.training.common_utils import get_metrics, onehot, shard
|
||||
from huggingface_hub import Repository
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
|
||||
AutoTokenizer,
|
||||
BatchEncoding,
|
||||
FlaxT5ForConditionalGeneration,
|
||||
HfArgumentParser,
|
||||
PreTrainedTokenizerBase,
|
||||
T5Config,
|
||||
is_tensorboard_available,
|
||||
set_seed,
|
||||
)
|
||||
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
|
||||
from transformers.utils import get_full_repo_name, send_example_telemetry
|
||||
|
||||
|
||||
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments:
|
||||
output_dir: str = field(
|
||||
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
|
||||
)
|
||||
overwrite_output_dir: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Overwrite the content of the output directory. "
|
||||
"Use this to continue training if output_dir points to a checkpoint directory."
|
||||
)
|
||||
},
|
||||
)
|
||||
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
|
||||
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
|
||||
per_device_train_batch_size: int = field(
|
||||
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
|
||||
)
|
||||
per_device_eval_batch_size: int = field(
|
||||
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
|
||||
)
|
||||
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
|
||||
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
|
||||
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
|
||||
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
||||
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
||||
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
||||
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
||||
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
||||
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
|
||||
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
|
||||
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
|
||||
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
|
||||
push_to_hub: bool = field(
|
||||
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
|
||||
)
|
||||
hub_model_id: str = field(
|
||||
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
|
||||
)
|
||||
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
|
||||
|
||||
def __post_init__(self):
|
||||
if self.output_dir is not None:
|
||||
self.output_dir = os.path.expanduser(self.output_dir)
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
|
||||
the token values by removing their value.
|
||||
"""
|
||||
d = asdict(self)
|
||||
for k, v in d.items():
|
||||
if isinstance(v, Enum):
|
||||
d[k] = v.value
|
||||
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
|
||||
d[k] = [x.value for x in v]
|
||||
if k.endswith("_token"):
|
||||
d[k] = f"<{k.upper()}>"
|
||||
return d
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
||||
"""
|
||||
|
||||
model_name_or_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
|
||||
)
|
||||
},
|
||||
)
|
||||
model_type: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
dtype: Optional[str] = field(
|
||||
default="float32",
|
||||
metadata={
|
||||
"help": (
|
||||
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
|
||||
" `[float32, float16, bfloat16]`."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
||||
validation_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
||||
)
|
||||
train_ref_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
|
||||
)
|
||||
validation_ref_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
validation_split_percentage: Optional[int] = field(
|
||||
default=5,
|
||||
metadata={
|
||||
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
||||
},
|
||||
)
|
||||
max_seq_length: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization and masking. Sequences longer than this"
|
||||
" will be truncated. Default to the max input length of the model."
|
||||
)
|
||||
},
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."},
|
||||
)
|
||||
mlm_probability: float = field(
|
||||
default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"}
|
||||
)
|
||||
mean_noise_span_length: float = field(
|
||||
default=3.0,
|
||||
metadata={"help": "Mean span length of masked tokens"},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
else:
|
||||
if self.train_file is not None:
|
||||
extension = self.train_file.split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
||||
if self.validation_file is not None:
|
||||
extension = self.validation_file.split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
||||
|
||||
|
||||
def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
|
||||
"""This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .
|
||||
|
||||
Training parameters to avoid padding with random_spans_noise_mask.
|
||||
When training a model with random_spans_noise_mask, we would like to set the other
|
||||
training hyperparmeters in a way that avoids padding.
|
||||
This function helps us compute these hyperparameters.
|
||||
We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
|
||||
and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
|
||||
This function tells us the required number of tokens in the raw example (for split_tokens())
|
||||
as well as the length of the encoded targets. Note that this function assumes
|
||||
the inputs and targets will have EOS appended and includes that in the reported length.
|
||||
|
||||
Args:
|
||||
inputs_length: an integer - desired length of the tokenized inputs sequence
|
||||
noise_density: a float
|
||||
mean_noise_span_length: a float
|
||||
Returns:
|
||||
tokens_length: length of original text in tokens
|
||||
targets_length: an integer - length in tokens of encoded targets sequence
|
||||
"""
|
||||
|
||||
def _tokens_length_to_inputs_length_targets_length(tokens_length):
|
||||
num_noise_tokens = int(round(tokens_length * noise_density))
|
||||
num_nonnoise_tokens = tokens_length - num_noise_tokens
|
||||
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
|
||||
# inputs contain all nonnoise tokens, sentinels for all noise spans
|
||||
# and one EOS token.
|
||||
_input_length = num_nonnoise_tokens + num_noise_spans + 1
|
||||
_output_length = num_noise_tokens + num_noise_spans + 1
|
||||
return _input_length, _output_length
|
||||
|
||||
tokens_length = inputs_length
|
||||
|
||||
while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
|
||||
tokens_length += 1
|
||||
|
||||
inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)
|
||||
|
||||
# minor hack to get the targets length to be equal to inputs length
|
||||
# which is more likely to have been set to a nice round number.
|
||||
if noise_density == 0.5 and targets_length > inputs_length:
|
||||
tokens_length -= 1
|
||||
targets_length -= 1
|
||||
return tokens_length, targets_length
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class FlaxDataCollatorForT5MLM:
|
||||
"""
|
||||
Data collator used for T5 span-masked language modeling.
|
||||
It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length.
|
||||
For more information on how T5 span-masked language modeling works, one can take a look
|
||||
at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__
|
||||
or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ .
|
||||
|
||||
Args:
|
||||
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
||||
The tokenizer used for encoding the data.
|
||||
noise_density (:obj:`float`):
|
||||
The probability with which to (randomly) mask tokens in the input.
|
||||
mean_noise_span_length (:obj:`float`):
|
||||
The average span length of the masked tokens.
|
||||
input_length (:obj:`int`):
|
||||
The expected input length after masking.
|
||||
target_length (:obj:`int`):
|
||||
The expected target length after masking.
|
||||
pad_token_id: (:obj:`int`):
|
||||
The pad token id of the model
|
||||
decoder_start_token_id: (:obj:`int):
|
||||
The decoder start token id of the model
|
||||
"""
|
||||
|
||||
tokenizer: PreTrainedTokenizerBase
|
||||
noise_density: float
|
||||
mean_noise_span_length: float
|
||||
input_length: int
|
||||
target_length: int
|
||||
pad_token_id: int
|
||||
decoder_start_token_id: int
|
||||
|
||||
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
|
||||
|
||||
# convert list to dict and tensorize input
|
||||
batch = BatchEncoding(
|
||||
{k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}
|
||||
)
|
||||
|
||||
input_ids = batch["input_ids"]
|
||||
batch_size, expandend_input_length = input_ids.shape
|
||||
|
||||
mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)])
|
||||
labels_mask = ~mask_indices
|
||||
|
||||
input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8))
|
||||
labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))
|
||||
|
||||
batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel)
|
||||
batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)
|
||||
|
||||
if batch["input_ids"].shape[-1] != self.input_length:
|
||||
raise ValueError(
|
||||
f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but"
|
||||
f" should be {self.target_length}."
|
||||
)
|
||||
|
||||
if batch["labels"].shape[-1] != self.target_length:
|
||||
raise ValueError(
|
||||
f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be"
|
||||
f" {self.target_length}."
|
||||
)
|
||||
|
||||
# to check that tokens are correctly preprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here...
|
||||
batch["decoder_input_ids"] = shift_tokens_right(
|
||||
batch["labels"], self.pad_token_id, self.decoder_start_token_id
|
||||
)
|
||||
|
||||
return batch
|
||||
|
||||
def create_sentinel_ids(self, mask_indices):
|
||||
"""
|
||||
Sentinel ids creation given the indices that should be masked.
|
||||
The start indices of each mask are replaced by the sentinel ids in increasing
|
||||
order. Consecutive mask indices to be deleted are replaced with `-1`.
|
||||
"""
|
||||
start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices
|
||||
start_indices[:, 0] = mask_indices[:, 0]
|
||||
|
||||
sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices)
|
||||
sentinel_ids = np.where(sentinel_ids != 0, (len(self.tokenizer) - sentinel_ids), 0)
|
||||
sentinel_ids -= mask_indices - start_indices
|
||||
|
||||
return sentinel_ids
|
||||
|
||||
def filter_input_ids(self, input_ids, sentinel_ids):
|
||||
"""
|
||||
Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
|
||||
This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
|
||||
"""
|
||||
batch_size = input_ids.shape[0]
|
||||
|
||||
input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
|
||||
# input_ids tokens and sentinel tokens are >= 0, tokens < 0 are
|
||||
# masked tokens coming after sentinel tokens and should be removed
|
||||
input_ids = input_ids_full[input_ids_full >= 0].reshape((batch_size, -1))
|
||||
input_ids = np.concatenate(
|
||||
[input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1
|
||||
)
|
||||
return input_ids
|
||||
|
||||
def random_spans_noise_mask(self, length):
|
||||
|
||||
"""This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .
|
||||
|
||||
Noise mask consisting of random spans of noise tokens.
|
||||
The number of noise tokens and the number of noise spans and non-noise spans
|
||||
are determined deterministically as follows:
|
||||
num_noise_tokens = round(length * noise_density)
|
||||
num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
|
||||
Spans alternate between non-noise and noise, beginning with non-noise.
|
||||
Subject to the above restrictions, all masks are equally likely.
|
||||
|
||||
Args:
|
||||
length: an int32 scalar (length of the incoming token sequence)
|
||||
noise_density: a float - approximate density of output mask
|
||||
mean_noise_span_length: a number
|
||||
|
||||
Returns:
|
||||
a boolean tensor with shape [length]
|
||||
"""
|
||||
|
||||
orig_length = length
|
||||
|
||||
num_noise_tokens = int(np.round(length * self.noise_density))
|
||||
# avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
|
||||
num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
|
||||
num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length))
|
||||
|
||||
# avoid degeneracy by ensuring positive number of noise spans
|
||||
num_noise_spans = max(num_noise_spans, 1)
|
||||
num_nonnoise_tokens = length - num_noise_tokens
|
||||
|
||||
# pick the lengths of the noise spans and the non-noise spans
|
||||
def _random_segmentation(num_items, num_segments):
|
||||
"""Partition a sequence of items randomly into non-empty segments.
|
||||
Args:
|
||||
num_items: an integer scalar > 0
|
||||
num_segments: an integer scalar in [1, num_items]
|
||||
Returns:
|
||||
a Tensor with shape [num_segments] containing positive integers that add
|
||||
up to num_items
|
||||
"""
|
||||
mask_indices = np.arange(num_items - 1) < (num_segments - 1)
|
||||
np.random.shuffle(mask_indices)
|
||||
first_in_segment = np.pad(mask_indices, [[1, 0]])
|
||||
segment_id = np.cumsum(first_in_segment)
|
||||
# count length of sub segments assuming that list is sorted
|
||||
_, segment_length = np.unique(segment_id, return_counts=True)
|
||||
return segment_length
|
||||
|
||||
noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
|
||||
nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans)
|
||||
|
||||
interleaved_span_lengths = np.reshape(
|
||||
np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2]
|
||||
)
|
||||
span_starts = np.cumsum(interleaved_span_lengths)[:-1]
|
||||
span_start_indicator = np.zeros((length,), dtype=np.int8)
|
||||
span_start_indicator[span_starts] = True
|
||||
span_num = np.cumsum(span_start_indicator)
|
||||
is_noise = np.equal(span_num % 2, 1)
|
||||
|
||||
return is_noise[:orig_length]
|
||||
|
||||
|
||||
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
|
||||
"""Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
|
||||
the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
|
||||
num_samples = len(samples_idx)
|
||||
if drop_last:
|
||||
samples_to_remove = num_samples % batch_size
|
||||
if samples_to_remove != 0:
|
||||
samples_idx = samples_idx[:-samples_to_remove]
|
||||
sections_split = num_samples // batch_size
|
||||
samples_idx = samples_idx.reshape((sections_split, batch_size))
|
||||
else:
|
||||
sections_split = math.ceil(num_samples / batch_size)
|
||||
samples_idx = np.array_split(samples_idx, sections_split)
|
||||
return samples_idx
|
||||
|
||||
|
||||
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
||||
summary_writer.scalar("train_time", train_time, step)
|
||||
|
||||
train_metrics = get_metrics(train_metrics)
|
||||
for key, vals in train_metrics.items():
|
||||
tag = f"train_{key}"
|
||||
for i, val in enumerate(vals):
|
||||
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
||||
|
||||
|
||||
def write_eval_metric(summary_writer, eval_metrics, step):
|
||||
for metric_name, value in eval_metrics.items():
|
||||
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax")
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
level=logging.INFO,
|
||||
datefmt="[%X]",
|
||||
)
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Set the verbosity to info of the Transformers logger (on main process only):
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Handle the repository creation
|
||||
if training_args.push_to_hub:
|
||||
if training_args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(
|
||||
Path(training_args.output_dir).absolute().name, token=training_args.hub_token
|
||||
)
|
||||
else:
|
||||
repo_name = training_args.hub_model_id
|
||||
repo = Repository(training_args.output_dir, clone_from=repo_name)
|
||||
|
||||
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
||||
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
||||
# 'text' is found. You can easily tweak this behavior (see below).
|
||||
if data_args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
datasets = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
datasets["validation"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
if data_args.train_file is not None:
|
||||
data_files["train"] = data_args.train_file
|
||||
if data_args.validation_file is not None:
|
||||
data_files["validation"] = data_args.validation_file
|
||||
extension = data_args.train_file.split(".")[-1]
|
||||
if extension == "txt":
|
||||
extension = "text"
|
||||
datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
datasets["validation"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
|
||||
if model_args.tokenizer_name:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
||||
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
||||
)
|
||||
|
||||
if model_args.config_name:
|
||||
config = T5Config.from_pretrained(
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
vocab_size=len(tokenizer),
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = T5Config.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
logger.warning("You are instantiating a new config instance from scratch.")
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# First we tokenize all the texts.
|
||||
if training_args.do_train:
|
||||
column_names = datasets["train"].column_names
|
||||
else:
|
||||
column_names = datasets["validation"].column_names
|
||||
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||
|
||||
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
||||
|
||||
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
||||
# Since we make sure that all sequences are of the same length, no attention_mask is needed.
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples[text_column_name], return_attention_mask=False)
|
||||
|
||||
tokenized_datasets = datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
)
|
||||
|
||||
# T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
|
||||
# To ensure that the input length is `max_seq_length`, we need to increase the maximum length
|
||||
# according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
|
||||
expanded_inputs_length, targets_length = compute_input_and_target_lengths(
|
||||
inputs_length=max_seq_length,
|
||||
noise_density=data_args.mlm_probability,
|
||||
mean_noise_span_length=data_args.mean_noise_span_length,
|
||||
)
|
||||
|
||||
# Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length.
|
||||
def group_texts(examples):
|
||||
# Concatenate all texts.
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# customize this part to your needs.
|
||||
if total_length >= expanded_inputs_length:
|
||||
total_length = (total_length // expanded_inputs_length) * expanded_inputs_length
|
||||
# Split by chunks of max_len.
|
||||
result = {
|
||||
k: [t[i : i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
return result
|
||||
|
||||
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
|
||||
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
|
||||
# might be slower to preprocess.
|
||||
#
|
||||
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
||||
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
||||
tokenized_datasets = tokenized_datasets.map(
|
||||
group_texts,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
)
|
||||
|
||||
# Enable tensorboard only on the master node
|
||||
has_tensorboard = is_tensorboard_available()
|
||||
if has_tensorboard and jax.process_index() == 0:
|
||||
try:
|
||||
from flax.metrics.tensorboard import SummaryWriter
|
||||
|
||||
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
||||
except ImportError as ie:
|
||||
has_tensorboard = False
|
||||
logger.warning(
|
||||
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
"Unable to display metrics through TensorBoard because the package is not installed: "
|
||||
"Please run pip install tensorboard to enable."
|
||||
)
|
||||
|
||||
# Initialize our training
|
||||
rng = jax.random.PRNGKey(training_args.seed)
|
||||
dropout_rngs = jax.random.split(rng, jax.local_device_count())
|
||||
|
||||
if model_args.model_name_or_path:
|
||||
model = FlaxT5ForConditionalGeneration.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
config.vocab_size = len(tokenizer)
|
||||
model = FlaxT5ForConditionalGeneration(
|
||||
config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
#use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
# Data collator
|
||||
# This one will take care of randomly masking the tokens.
|
||||
data_collator = FlaxDataCollatorForT5MLM(
|
||||
tokenizer=tokenizer,
|
||||
noise_density=data_args.mlm_probability,
|
||||
mean_noise_span_length=data_args.mean_noise_span_length,
|
||||
input_length=max_seq_length,
|
||||
target_length=targets_length,
|
||||
pad_token_id=model.config.pad_token_id,
|
||||
decoder_start_token_id=model.config.decoder_start_token_id,
|
||||
)
|
||||
|
||||
# Store some constant
|
||||
num_epochs = int(training_args.num_train_epochs)
|
||||
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
||||
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
||||
eval_batch_size = per_device_eval_batch_size * jax.device_count()
|
||||
|
||||
num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
|
||||
|
||||
num_of_hosts = jax.process_count()
|
||||
current_host_idx = jax.process_index()
|
||||
|
||||
# Create learning rate schedule
|
||||
warmup_fn = optax.linear_schedule(
|
||||
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
|
||||
)
|
||||
decay_fn = optax.linear_schedule(
|
||||
init_value=training_args.learning_rate,
|
||||
end_value=0,
|
||||
transition_steps=num_train_steps - training_args.warmup_steps,
|
||||
)
|
||||
linear_decay_lr_schedule_fn = optax.join_schedules(
|
||||
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
|
||||
)
|
||||
|
||||
# We use Optax's "masking" functionality to not apply weight decay
|
||||
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
||||
# mask boolean with the same structure as the parameters.
|
||||
# The mask is True for parameters that should be decayed.
|
||||
def decay_mask_fn(params):
|
||||
flat_params = traverse_util.flatten_dict(params)
|
||||
# find out all LayerNorm parameters
|
||||
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
|
||||
layer_norm_named_params = set(
|
||||
[
|
||||
layer[-2:]
|
||||
for layer_norm_name in layer_norm_candidates
|
||||
for layer in flat_params.keys()
|
||||
if layer_norm_name in "".join(layer).lower()
|
||||
]
|
||||
)
|
||||
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
|
||||
return traverse_util.unflatten_dict(flat_mask)
|
||||
|
||||
# create adam optimizer
|
||||
if training_args.adafactor:
|
||||
# We use the default parameters here to initialize adafactor,
|
||||
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
||||
optimizer = optax.adafactor(
|
||||
learning_rate=linear_decay_lr_schedule_fn,
|
||||
)
|
||||
else:
|
||||
optimizer = optax.adamw(
|
||||
learning_rate=linear_decay_lr_schedule_fn,
|
||||
b1=training_args.adam_beta1,
|
||||
b2=training_args.adam_beta2,
|
||||
weight_decay=training_args.weight_decay,
|
||||
mask=decay_mask_fn,
|
||||
)
|
||||
|
||||
# Setup train state
|
||||
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
|
||||
|
||||
# Define gradient update step fn
|
||||
def train_step(state, batch, dropout_rng):
|
||||
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
||||
|
||||
def loss_fn(params):
|
||||
labels = batch.pop("labels")
|
||||
|
||||
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
||||
|
||||
# compute loss
|
||||
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
|
||||
|
||||
return loss
|
||||
|
||||
grad_fn = jax.value_and_grad(loss_fn)
|
||||
loss, grad = grad_fn(state.params)
|
||||
grad = jax.lax.pmean(grad, "batch")
|
||||
new_state = state.apply_gradients(grads=grad)
|
||||
|
||||
metrics = jax.lax.pmean(
|
||||
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
|
||||
)
|
||||
|
||||
return new_state, metrics, new_dropout_rng
|
||||
|
||||
# Create parallel version of the train step
|
||||
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
||||
|
||||
# Define eval fn
|
||||
def eval_step(params, batch):
|
||||
labels = batch.pop("labels")
|
||||
|
||||
logits = model(**batch, params=params, train=False)[0]
|
||||
|
||||
# compute loss
|
||||
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
|
||||
|
||||
# compute accuracy
|
||||
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)
|
||||
|
||||
# summarize metrics
|
||||
metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
|
||||
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
||||
|
||||
return metrics
|
||||
|
||||
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
|
||||
|
||||
# Replicate the train state on each device
|
||||
state = jax_utils.replicate(state)
|
||||
|
||||
train_time = 0
|
||||
epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
|
||||
for epoch in epochs:
|
||||
# ======================== Training ================================
|
||||
train_start = time.time()
|
||||
train_metrics = []
|
||||
|
||||
# Create sampling rng
|
||||
rng, input_rng = jax.random.split(rng)
|
||||
|
||||
# Generate an epoch by shuffling sampling indices from the train dataset
|
||||
num_train_samples = len(tokenized_datasets["train"])
|
||||
# Avoid using jax.numpy here in case of TPU training
|
||||
train_samples_idx = np.random.permutation(np.arange(num_train_samples))
|
||||
train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
|
||||
|
||||
# Gather the indexes for creating the batch and do a training step
|
||||
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
|
||||
samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
|
||||
model_inputs = data_collator(samples)
|
||||
|
||||
local_host_model_inputs = {
|
||||
key: np.split(model_inputs.data[key], num_of_hosts, axis=0)[current_host_idx]
|
||||
for key, value in model_inputs.data.items()
|
||||
}
|
||||
|
||||
# Model forward
|
||||
model_inputs = shard(local_host_model_inputs)
|
||||
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
|
||||
train_metrics.append(train_metric)
|
||||
|
||||
cur_step = epoch * (num_train_samples // train_batch_size) + step
|
||||
|
||||
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
||||
# Save metrics
|
||||
train_metric = jax_utils.unreplicate(train_metric)
|
||||
train_time += time.time() - train_start
|
||||
if has_tensorboard and jax.process_index() == 0:
|
||||
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
||||
|
||||
epochs.write(
|
||||
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
|
||||
f" {train_metric['learning_rate'].mean()})"
|
||||
)
|
||||
|
||||
train_metrics = []
|
||||
|
||||
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
||||
# ======================== Evaluating ==============================
|
||||
num_eval_samples = len(tokenized_datasets["validation"])
|
||||
# Avoid using jax.numpy here in case of TPU training
|
||||
eval_samples_idx = np.arange(num_eval_samples)
|
||||
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
|
||||
|
||||
eval_metrics = []
|
||||
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
|
||||
samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
|
||||
model_inputs = data_collator(samples)
|
||||
|
||||
# Model forward
|
||||
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
|
||||
state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
|
||||
)
|
||||
eval_metrics.append(metrics)
|
||||
|
||||
# get eval metrics
|
||||
eval_metrics = get_metrics(eval_metrics)
|
||||
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
||||
|
||||
# Update progress bar
|
||||
epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})")
|
||||
|
||||
# Save metrics
|
||||
if has_tensorboard and jax.process_index() == 0:
|
||||
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
||||
|
||||
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
||||
# save checkpoint after each epoch and push checkpoint to the hub
|
||||
if jax.process_index() == 0:
|
||||
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
||||
model.save_pretrained(training_args.output_dir, params=params)
|
||||
tokenizer.save_pretrained(training_args.output_dir)
|
||||
if training_args.push_to_hub:
|
||||
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
|
||||
|
||||
# Eval after training
|
||||
if training_args.do_eval:
|
||||
num_eval_samples = len(tokenized_datasets["validation"])
|
||||
# Avoid using jax.numpy here in case of TPU training
|
||||
eval_samples_idx = np.arange(num_eval_samples)
|
||||
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
|
||||
|
||||
eval_metrics = []
|
||||
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
|
||||
samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
|
||||
model_inputs = data_collator(samples)
|
||||
|
||||
# Model forward
|
||||
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
|
||||
state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
|
||||
)
|
||||
eval_metrics.append(metrics)
|
||||
|
||||
# get eval metrics
|
||||
eval_metrics = get_metrics(eval_metrics)
|
||||
eval_metrics = jax.tree_map(lambda metric: jnp.mean(metric).item(), eval_metrics)
|
||||
|
||||
if jax.process_index() == 0:
|
||||
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
|
||||
path = os.path.join(training_args.output_dir, "eval_results.json")
|
||||
with open(path, "w") as f:
|
||||
json.dump(eval_metrics, f, indent=4, sort_keys=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
112
t5_tokenizer_model.py
Executable file
112
t5_tokenizer_model.py
Executable file
@ -0,0 +1,112 @@
|
||||
#!/usr/bin/env python3
|
||||
import json
|
||||
from typing import Iterator, List, Union
|
||||
|
||||
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
|
||||
from tokenizers.implementations.base_tokenizer import BaseTokenizer
|
||||
from tokenizers.models import Unigram
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
|
||||
|
||||
class SentencePieceUnigramTokenizer(BaseTokenizer):
|
||||
"""
|
||||
This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .
|
||||
|
||||
Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
|
||||
Represents the Unigram algorithm, with the pretokenization used by SentencePiece
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
replacement: str = "▁",
|
||||
add_prefix_space: bool = True,
|
||||
unk_token: Union[str, AddedToken] = "<unk>",
|
||||
eos_token: Union[str, AddedToken] = "</s>",
|
||||
pad_token: Union[str, AddedToken] = "<pad>",
|
||||
):
|
||||
self.special_tokens = {
|
||||
"pad": {"id": 0, "token": pad_token},
|
||||
"eos": {"id": 1, "token": eos_token},
|
||||
"unk": {"id": 2, "token": unk_token},
|
||||
}
|
||||
|
||||
self.special_tokens_list = [None] * len(self.special_tokens)
|
||||
for token_dict in self.special_tokens.values():
|
||||
self.special_tokens_list[token_dict["id"]] = token_dict["token"]
|
||||
|
||||
tokenizer = Tokenizer(Unigram())
|
||||
|
||||
tokenizer.normalizer = normalizers.Sequence(
|
||||
[
|
||||
normalizers.Nmt(),
|
||||
normalizers.NFKC(),
|
||||
normalizers.Replace(Regex(" {2,}"), " "),
|
||||
normalizers.Lowercase(),
|
||||
]
|
||||
)
|
||||
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
||||
[
|
||||
pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
|
||||
pre_tokenizers.Digits(individual_digits=True),
|
||||
pre_tokenizers.Punctuation(),
|
||||
]
|
||||
)
|
||||
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
||||
|
||||
tokenizer.post_processor = TemplateProcessing(
|
||||
single=f"$A {self.special_tokens['eos']['token']}",
|
||||
special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
|
||||
)
|
||||
|
||||
parameters = {
|
||||
"model": "SentencePieceUnigram",
|
||||
"replacement": replacement,
|
||||
"add_prefix_space": add_prefix_space,
|
||||
}
|
||||
|
||||
super().__init__(tokenizer, parameters)
|
||||
|
||||
def train(
|
||||
self,
|
||||
files: Union[str, List[str]],
|
||||
vocab_size: int = 8000,
|
||||
show_progress: bool = True,
|
||||
):
|
||||
"""Train the model using the given files"""
|
||||
|
||||
trainer = trainers.UnigramTrainer(
|
||||
vocab_size=vocab_size,
|
||||
special_tokens=self.special_tokens_list,
|
||||
show_progress=show_progress,
|
||||
)
|
||||
|
||||
if isinstance(files, str):
|
||||
files = [files]
|
||||
self._tokenizer.train(files, trainer=trainer)
|
||||
|
||||
self.add_unk_id()
|
||||
|
||||
def train_from_iterator(
|
||||
self,
|
||||
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
||||
vocab_size: int = 8000,
|
||||
show_progress: bool = True,
|
||||
):
|
||||
"""Train the model using the given iterator"""
|
||||
|
||||
trainer = trainers.UnigramTrainer(
|
||||
vocab_size=vocab_size,
|
||||
special_tokens=self.special_tokens_list,
|
||||
show_progress=show_progress,
|
||||
)
|
||||
|
||||
self._tokenizer.train_from_iterator(iterator, trainer=trainer)
|
||||
|
||||
self.add_unk_id()
|
||||
|
||||
def add_unk_id(self):
|
||||
tokenizer_json = json.loads(self._tokenizer.to_str())
|
||||
|
||||
tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]
|
||||
|
||||
self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
|
Loading…
Reference in New Issue
Block a user