113 lines
3.8 KiB
Python
Executable File
113 lines
3.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import json
|
|
from typing import Iterator, List, Union
|
|
|
|
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
|
|
from tokenizers.implementations.base_tokenizer import BaseTokenizer
|
|
from tokenizers.models import Unigram
|
|
from tokenizers.processors import TemplateProcessing
|
|
|
|
|
|
class SentencePieceUnigramTokenizer(BaseTokenizer):
|
|
"""
|
|
This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .
|
|
|
|
Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
|
|
Represents the Unigram algorithm, with the pretokenization used by SentencePiece
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
replacement: str = "▁",
|
|
add_prefix_space: bool = True,
|
|
unk_token: Union[str, AddedToken] = "<unk>",
|
|
eos_token: Union[str, AddedToken] = "</s>",
|
|
pad_token: Union[str, AddedToken] = "<pad>",
|
|
):
|
|
self.special_tokens = {
|
|
"pad": {"id": 0, "token": pad_token},
|
|
"eos": {"id": 1, "token": eos_token},
|
|
"unk": {"id": 2, "token": unk_token},
|
|
}
|
|
|
|
self.special_tokens_list = [None] * len(self.special_tokens)
|
|
for token_dict in self.special_tokens.values():
|
|
self.special_tokens_list[token_dict["id"]] = token_dict["token"]
|
|
|
|
tokenizer = Tokenizer(Unigram())
|
|
|
|
tokenizer.normalizer = normalizers.Sequence(
|
|
[
|
|
normalizers.Nmt(),
|
|
normalizers.NFKC(),
|
|
normalizers.Replace(Regex(" {2,}"), " "),
|
|
normalizers.Lowercase(),
|
|
]
|
|
)
|
|
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
|
[
|
|
pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
|
|
pre_tokenizers.Digits(individual_digits=True),
|
|
pre_tokenizers.Punctuation(),
|
|
]
|
|
)
|
|
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
|
|
|
tokenizer.post_processor = TemplateProcessing(
|
|
single=f"$A {self.special_tokens['eos']['token']}",
|
|
special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
|
|
)
|
|
|
|
parameters = {
|
|
"model": "SentencePieceUnigram",
|
|
"replacement": replacement,
|
|
"add_prefix_space": add_prefix_space,
|
|
}
|
|
|
|
super().__init__(tokenizer, parameters)
|
|
|
|
def train(
|
|
self,
|
|
files: Union[str, List[str]],
|
|
vocab_size: int = 8000,
|
|
show_progress: bool = True,
|
|
):
|
|
"""Train the model using the given files"""
|
|
|
|
trainer = trainers.UnigramTrainer(
|
|
vocab_size=vocab_size,
|
|
special_tokens=self.special_tokens_list,
|
|
show_progress=show_progress,
|
|
)
|
|
|
|
if isinstance(files, str):
|
|
files = [files]
|
|
self._tokenizer.train(files, trainer=trainer)
|
|
|
|
self.add_unk_id()
|
|
|
|
def train_from_iterator(
|
|
self,
|
|
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
|
vocab_size: int = 8000,
|
|
show_progress: bool = True,
|
|
):
|
|
"""Train the model using the given iterator"""
|
|
|
|
trainer = trainers.UnigramTrainer(
|
|
vocab_size=vocab_size,
|
|
special_tokens=self.special_tokens_list,
|
|
show_progress=show_progress,
|
|
)
|
|
|
|
self._tokenizer.train_from_iterator(iterator, trainer=trainer)
|
|
|
|
self.add_unk_id()
|
|
|
|
def add_unk_id(self):
|
|
tokenizer_json = json.loads(self._tokenizer.to_str())
|
|
|
|
tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]
|
|
|
|
self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
|