finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
\\
Let $v_{ij}=\Lk(a_i, a_j^+)$. Then
$V =\{ v_ij\}_{i, j =1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+=\sum_{j} v_{jk}\alpha_j$. Then
We also notice that $\Lk(a_i, a_j^-)=\Lk(a_i^+, a_j)= v_{ij}$ and
$a_j^-=\sum_k v_{kj} t^{-1}\alpha_j$.
\\
\noindent
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c =0\in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
\[
R^k \overset{A}\longrightarrow R^n \longtwoheadrightarrow M,
\]
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M =\det A$.
\begin{theorem}
Order of $M$ doesn't depend on $A$.
\end{theorem}
\noindent
For knots the order of the Alexander module is the Alexander polynomial.
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.