120 lines
4.3 KiB
TeX
120 lines
4.3 KiB
TeX
\begin{definition}
|
|
Let $X$ be a knot complement.
|
|
Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism
|
|
$\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\
|
|
The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$.
|
|
\[
|
|
\widetilde{X} \longtwoheadrightarrow X
|
|
\]
|
|
\end{definition}
|
|
%Rolfsen, bachalor thesis of Kamila
|
|
\begin{figure}[h]
|
|
\fontsize{10}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}}
|
|
\caption{Infinite cyclic cover of a knot complement.}
|
|
\label{fig:covering}
|
|
}
|
|
\end{figure}
|
|
\begin{figure}[h]
|
|
\fontsize{10}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
|
|
\caption{A knot complement.}
|
|
\label{fig:complement}
|
|
}
|
|
\end{figure}
|
|
\noindent
|
|
Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\
|
|
finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
|
|
\\
|
|
Let $v_{ij} = \Lk(a_i, a_j^+)$. Then
|
|
$V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then
|
|
$\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$.
|
|
We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and
|
|
$a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
|
|
\\
|
|
\noindent
|
|
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
|
|
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
|
|
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
|
|
\[
|
|
\frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]}
|
|
\]
|
|
\\
|
|
?????????????\\
|
|
There is at least one paper where the structure of (Alexander module?) is calculated from a specific knot (?minimal number of generators?)
|
|
\\
|
|
C. Kearton, S. M. J. Wilson
|
|
\\
|
|
\begin{fact}
|
|
Let $A$ be a matrix over principal ideal domain $R$. Than there exist matrices $C$, $D$ and $E$ such that $A = CDE$,
|
|
\[D = \begin{bmatrix}
|
|
d_1 & 0 & \cdots & \cdots & 0 \\
|
|
0 & d_2 & 0 & \cdots & 0 \\
|
|
\sdots & & \ddots & & \sdots & \\
|
|
0 & \cdots & 0 & d_{n-1} & 0\\
|
|
0 & \cdots & \cdots & 0 & d_n
|
|
\end{bmatrix},\]
|
|
where $d_{i + 1} | d_i$, and matrices
|
|
$C$ and $E$ are invertible over $R$.\\
|
|
$D$ is called a Smith normal form of the matrix $A$.
|
|
\end{fact}
|
|
|
|
\begin{definition}
|
|
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of a knot $K$.
|
|
\end{definition}
|
|
\noindent
|
|
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
|
|
\[
|
|
R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M,
|
|
\]
|
|
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$.
|
|
\begin{theorem}
|
|
Order of $M$ doesn't depend on $A$.
|
|
\end{theorem}
|
|
\noindent
|
|
For knots the order of the Alexander module is the Alexander polynomial.
|
|
\begin{theorem}
|
|
\[
|
|
\forall x \in M: (\ord M) x = 0.
|
|
\]
|
|
\end{theorem}
|
|
\noindent
|
|
$M$ is well defined up to a unit in $R$.
|
|
\\
|
|
??????????????????\\
|
|
General picture : $K$, $X$ knot complement...
|
|
\begin{eqnarray*}
|
|
H_1( X, \mathbb{Z}) = \mathbb{Z} \\
|
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \\
|
|
\pi_1(X)
|
|
\end{eqnarray*}
|
|
\begin{definition}
|
|
The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.
|
|
\end{definition}
|
|
%see Maciej page
|
|
\noindent
|
|
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.
|
|
\\
|
|
?????????????????????
|
|
\\
|
|
\noindent
|
|
$\Sigma_?(K) \rightarrow S^3$ ?????\\
|
|
$H_1(\Sigma_?(K), \mathbb{Z}) = h$\\
|
|
$H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\
|
|
...\\
|
|
\begin{figure}[h]
|
|
\fontsize{10}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}}
|
|
\caption{$c, d \in H_1(\widetilde{X})$.}
|
|
\label{fig:covering_pairing}
|
|
}
|
|
\end{figure}
|
|
|
|
\subsection*{Blanchfield pairing}
|