2019-07-03 07:06:01 +02:00
\begin { definition}
2019-10-31 09:20:02 +01:00
A knot $ K $ in $ S ^ 3 $ is a smooth (PL - smooth)
embedding of a circle $ S ^ 1 $ in $ S ^ 3 $ :
\[
\varphi : S^ 1 \hookrightarrow S^ 3
\]
2019-07-03 07:06:01 +02:00
\end { definition}
2019-10-31 09:20:02 +01:00
2019-07-03 07:06:01 +02:00
\noindent
2019-10-31 09:20:02 +01:00
Usually we think about a knot
as an image of an embedding:
$ K = \varphi ( S ^ 1 ) $ .
Some basic examples and counterexamples
are shown respectively in
\autoref { fig:unknot} and
\autoref { fig:notknot} .
2019-10-25 07:02:17 +02:00
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\centering
\begin { subfigure} { 0.3\textwidth }
\centering
\includegraphics [width=0.5\textwidth]
{ unknot.png}
\end { subfigure}
\begin { subfigure} { 0.3\textwidth }
\centering
\includegraphics [width=0.5\textwidth]
{ trefoil.png}
\end { subfigure}
\caption { Knots examples:
unknot (left) and trefoil (right).}
\label { fig:unknot}
2019-10-25 07:02:17 +02:00
\end { figure}
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\centering
\begin { subfigure} { 0.3\textwidth }
\centering
\includegraphics [width=0.5\textwidth]
{ not_ injective_ knot.png}
\end { subfigure}
\begin { subfigure} { 0.3\textwidth }
\centering
\includegraphics [width=0.5\textwidth]
{ not_ smooth_ knot.png}
\end { subfigure}
\caption { Not-knots examples:
an image of
a function $ { S ^ 1 \longrightarrow S ^ 3 } $
that isn't injective (left) and
of a function
that isn't smooth (right).}
\label { fig:notknot}
2019-10-25 07:02:17 +02:00
\end { figure}
2019-07-03 07:06:01 +02:00
\begin { definition}
2019-10-31 09:20:02 +01:00
Two knots $ K _ 0 = \varphi _ 0 ( S ^ 1 ) $ ,
$ K _ 1 = \varphi _ 1 ( S ^ 1 ) $
are equivalent if the embeddings
$ \varphi _ 0 $ and $ \varphi _ 1 $ are isotopic,
that is there exists a continues function
\begin { align*}
& \Phi : S^ 1 \times
[0, 1] \hookrightarrow S^ 3, \\
& \Phi (x, t) = \Phi _ t(x)
\end { align*}
such that
$ \Phi _ t $ is an embedding
for any $ t \in [ 0 , 1 ] $ ,
$ \Phi _ 0 = \varphi _ 0 $ and
$ \Phi _ 1 = \varphi _ 1 $ .
2019-07-03 07:06:01 +02:00
\end { definition}
\begin { theorem}
2019-10-31 09:20:02 +01:00
Two knots $ K _ 0 $ and $ K _ 1 $ are isotopic
if and only if they are ambient isotopic,
i.e. there exists a family of self-diffeomorphisms
$ \Psi = \{ \psi _ t: t \in [ 0 , 1 ] \} $ such that:
\begin { align*}
& \psi (t) = \psi _ t
\text { is continius on
$ t \in [ 0 , 1 ] $ } ,\\
& \psi _ t: S^ 3 \hookrightarrow S^ 3,\\
& \psi _ 0 = id ,\\
& \psi _ 1(K_ 0) = K_ 1.
\end { align*}
2019-07-03 07:06:01 +02:00
\end { theorem}
2019-10-25 07:02:17 +02:00
2019-07-03 07:06:01 +02:00
\begin { definition}
2019-10-31 09:20:02 +01:00
A knot is trivial (unknot) if it is equivalent
to an embedding
$ \varphi ( t ) = ( \cos t, \sin t, 0 ) $ ,
where $ t \in [ 0 , 2 \pi ] $
is a parametrisation of $ S ^ 1 $ .
2019-07-03 07:06:01 +02:00
\end { definition}
2019-10-25 07:02:17 +02:00
2019-07-03 07:06:01 +02:00
\begin { definition}
2019-10-31 09:20:02 +01:00
A link with $ k $ - components is a
(smooth) embedding of
$ \overbrace { S ^ 1 \sqcup \ldots \sqcup S ^ 1 } ^ k $
in $ S ^ 3 $ .
2019-07-03 07:06:01 +02:00
\end { definition}
2019-10-25 07:02:17 +02:00
2019-07-03 07:06:01 +02:00
\begin { example}
Links:
\begin { itemize}
\item
a trivial link with $ 3 $ components:
\includegraphics [width=0.2\textwidth] { 3unknots.png} ,
\item
2019-10-18 11:19:20 +02:00
a Hopf link: \includegraphics [width=0.13\textwidth] { Hopf.png} ,
2019-07-03 07:06:01 +02:00
\item
a Whitehead link:
\includegraphics [width=0.13\textwidth] { WhiteheadLink.png} ,
\item
2019-10-18 11:19:20 +02:00
a Borromean link:
2019-07-03 07:06:01 +02:00
\includegraphics [width=0.1\textwidth] { BorromeanRings.png} .
\end { itemize}
\end { example}
%
%
%
2019-10-31 09:20:02 +01:00
\begin { definition} \label { def:link_ diagram}
A link diagram $ D _ { \pi } $ is a picture
over projection $ \pi $ of a link $ L $ in
$ \mathbb { R } ^ 3 $ ($ S ^ 3 $ ) to
$ \mathbb { R } ^ 2 $ ($ S ^ 2 $ ) such that:
\begin { enumerate} [label={ (\arabic * )} ]
\item
$ D _ { \pi | _ L } $ is non degenerate,
\item
the double points are not degenerate,
\item there are no triple point.
\end { enumerate}
2019-07-03 07:06:01 +02:00
\end { definition}
2019-10-31 09:20:02 +01:00
\noindent
By \Cref { def:link_ diagram} the following pictures can not be a part of a diagram:
\includegraphics [width=0.05\textwidth] { LinkDiagram1.png} ,
\includegraphics [width=0.03\textwidth] { LinkDiagram2.png} ,
\includegraphics [width=0.05\textwidth] { LinkDiagram3.png} .
2019-07-03 07:06:01 +02:00
\noindent
2019-10-18 11:19:20 +02:00
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.
2019-10-31 09:20:02 +01:00
\begin { lemma}
2019-07-03 07:06:01 +02:00
Every link admits a link diagram.
2019-10-31 09:20:02 +01:00
\end { lemma}
2019-10-18 11:19:20 +02:00
\noindent
Let $ D $ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).
2019-07-03 07:06:01 +02:00
We can distinguish two types of crossings: right-handed
$ \left ( \PICorientpluscross \right ) $ , called a positive crossing, and left-handed $ \left ( \PICorientminuscross \right ) $ , called a negative crossing.
\subsection { Reidemeister moves}
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
\begin { enumerate} [label=\Roman * ]
2019-10-31 09:20:02 +01:00
\item \hfill \\
\includegraphics [width=0.6\textwidth] { rm1.png} ,
\item \hfill \\ \includegraphics [width=0.6\textwidth] { rm2.png} ,
\item \hfill \\ \includegraphics [width=0.4\textwidth] { rm3.png} .
2019-07-03 07:06:01 +02:00
\end { enumerate}
\begin { theorem} [Reidemeister, 1927 ]
2019-10-31 09:20:02 +01:00
Two diagrams of the same link can
be deformed into each other by a finite
sequence of Reidemeister moves
(and isotopy of the plane).
2019-07-03 07:06:01 +02:00
\end { theorem}
%
%
%
%The number of Reidemeister Moves Needed for Unknotting
%Joel Hass, Jeffrey C. Lagarias
%(Submitted on 2 Jul 1998)
% Piotr Sumata, praca magisterska
% proof - transversality theorem (Thom)
%Singularities of Differentiable Maps
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
\subsection { Seifert surface}
\noindent
Let $ D $ be an oriented diagram of a link $ L $ . We change the diagram by smoothing each crossing:
\begin { align*}
2019-10-31 09:20:02 +01:00
\PICorientpluscross \mapsto
\PICorientLRsplit ,\\
\PICorientminuscross \mapsto
\PICorientLRsplit .
2019-07-03 07:06:01 +02:00
\end { align*}
2019-10-31 09:20:02 +01:00
We smooth all the crossings, so we get
a disjoint union of circles on the plane.
Each circle bounds a disks in
$ \mathbb { R } ^ 3 $
(we choose disks that don't intersect).
For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one.
We get an orientable surface $ \Sigma $
such that $ \partial \Sigma = L $ .\\
2019-07-03 07:06:01 +02:00
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\fontsize { 15} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.8\textwidth } { !}
{ \input { images/seifert_ alg.pdf_ tex} }
\caption { Constructing a Seifert surface.}
\label { fig:SeifertAlg}
}
2019-07-03 07:06:01 +02:00
\end { figure}
\noindent
2019-10-18 11:19:20 +02:00
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $ D _ 1 $ and $ D _ 2 $ . Then we glue both components on the boundaries: $ \partial D _ 1 $ and $ \partial D _ 2 $ .
2019-07-03 07:06:01 +02:00
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\centering
\includegraphics [width=0.6\textwidth]
{ seifert_ connect.png}
\caption { Connecting two surfaces.}
\label { fig:SeifertConnect}
2019-07-03 07:06:01 +02:00
\end { figure}
2019-10-31 09:20:02 +01:00
\begin { theorem} [Seifert]\label { theo:Seifert}
Every link in $ S ^ 3 $ bounds a surface
$ \Sigma $ that is compact, connected
and orientable.
Such a surface is called a Seifert surface.
2019-07-03 07:06:01 +02:00
\end { theorem}
2019-10-31 09:20:02 +01:00
2019-07-03 07:06:01 +02:00
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\fontsize { 12} { 10} \selectfont
\centering
\def \svgwidth { \linewidth }
\resizebox { 1\textwidth } { !} {
\input { images/torus_ 1_ 2_ 3.pdf_ tex} }
\caption { Genus of an orientable surface.}
\label { fig:genera}
2019-07-03 07:06:01 +02:00
\end { figure}
%
%
\begin { definition}
2019-10-31 09:20:02 +01:00
The three genus $ g _ 3 ( K ) $ ($ g ( K ) $ )
of a knot $ K $ is the minimal genus
of a Seifert surface $ \Sigma $ for $ K $ .
2019-07-03 07:06:01 +02:00
\end { definition}
\begin { corollary}
2019-10-31 09:20:02 +01:00
A knot $ K $ is trivial if and only
$ g _ 3 ( K ) = 0 $ .
2019-07-03 07:06:01 +02:00
\end { corollary}
\noindent
2019-10-31 09:20:02 +01:00
Remark: there are knots that admit non isotopic
Seifert surfaces of minimal genus
(András Juhász, 2008).
2019-07-03 07:06:01 +02:00
\begin { definition}
2019-10-31 09:20:02 +01:00
Suppose $ \alpha $ and $ \beta $ are two
simple closed curves in $ \mathbb { R } ^ 3 $ .
On a diagram $ L $ consider all crossings
between $ \alpha $ and $ \beta $ .
Let $ N _ + $ be the number
of positive crossings,
$ N _ - $ - negative.
Then the linking number:
$ \Lk ( \alpha , \beta ) =
\frac { 1} { 2} (N_ + - N_ -)$ .
2019-07-03 07:06:01 +02:00
\end { definition}
2019-10-31 09:20:02 +01:00
\begin { definition} \label { def:lk_ via_ homo}
Let $ \alpha $ and $ \beta $ be
two disjoint simple closed curves in $ S ^ 3 $ .
Let $ \nu ( \beta ) $ be a tubular
neighbourhood of $ \beta $ .
The linking number can be interpreted
via first homology group, where
$ \Lk ( \alpha , \beta ) $ is equal
to evaluation of $ \alpha $ as element
of first homology group
of the complement of $ \beta $ :
\[
\alpha \in H_ 1(S^ 3 \setminus
\nu (\beta ), \mathbb { Z} )
\cong \mathbb { Z} .
\]
2019-07-03 07:06:01 +02:00
\end { definition}
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\fontsize { 10} { 8} \selectfont
\centering
\def \svgwidth { \linewidth }
\resizebox { \textwidth } { !} {
% \centering
\begin { subfigure} { 0.3\textwidth }
\centering
\def \svgwidth { \linewidth }
\resizebox { 1\textwidth } { !} {
\input { images/linking_ torus_ 6_ 2.pdf_ tex}
}
\end { subfigure}
\begin { subfigure} { 0.3\textwidth }
\centering
\def \svgwidth { \linewidth }
\resizebox { 1\textwidth } { !} {
\input { images/linking_ hopf.pdf_ tex}
}
\end { subfigure}
}
\vspace * { 10mm}
\caption {
Linking number of a Hopf link (left)
and a torus link $ T ( 6 , 2 ) $ (right).
}
\label { fig:unknot}
2019-07-03 07:06:01 +02:00
\end { figure}
2019-10-31 09:20:02 +01:00
2019-07-03 07:06:01 +02:00
\begin { fact}
2019-10-18 11:19:20 +02:00
$
2019-07-03 07:06:01 +02:00
g_ 3(\Sigma ) = \frac { 1} { 2} b_ 1 (\Sigma ) =
\frac { 1} { 2} \dim _ { \mathbb { R} } H_ 1(\Sigma , \mathbb { R} ),
2019-10-18 11:19:20 +02:00
$
2019-10-31 09:20:02 +01:00
where $ b _ 1 $ is first Betti number of a surface $ \Sigma $ .
2019-07-03 07:06:01 +02:00
\end { fact}
\subsection { Seifert matrix}
2019-10-31 09:20:02 +01:00
Let $ L $ be a link and
$ \Sigma $ be an oriented
Seifert surface for $ L $ .
Choose a basis for
$ H _ 1 ( \Sigma , \mathbb { Z } ) $
consisting of simple closed curves
$ \alpha _ 1 , \dots , \alpha _ n $ .
\noindent
Let $ \alpha _ 1 ^ + , \dots \alpha _ n ^ + $
be copies of $ \alpha _ i $
lifted up off the surface
(push up along a vector field
normal to $ \Sigma $ ).
Note that elements $ \alpha _ i $ are
contained in the Seifert surface while all
$ \alpha _ i ^ + $ don't intersect the surface.
\noindent
Let $ \Lk ( \alpha _ i, \alpha _ j ^ + ) = \{ a _ { ij } \} $ .
Then the matrix $ S = \{ a _ { ij } \} _ { i, j = 1 } ^ n $
is called a Seifert matrix for $ L $ .
Note that by choosing a different basis
we get a different matrix.
2019-07-03 07:06:01 +02:00
\begin { figure} [h]
2019-10-31 09:20:02 +01:00
\fontsize { 20} { 10} \selectfont
\centering
\def \svgwidth { \linewidth }
\resizebox { 0.8\textwidth } { !} {
\input { images/seifert_ matrix.pdf_ tex}
}
\caption {
A basis $ \alpha _ 1 , \alpha _ 2 $
of the first homology
group of a Seifert surface
and a copy of
element $ \alpha _ 1 $ pushed up
along vector normal to the Seifert surface.
}
\label { fig:alpha_ plus}
2019-07-03 07:06:01 +02:00
\end { figure}
\begin { theorem}
2019-10-31 09:20:02 +01:00
The Seifert matrices $ S _ 1 $ and $ S _ 2 $
for the same link $ L $ are S-equivalent,
that is, $ S _ 2 $ can be obtained from
$ S _ 1 $ by a sequence of following moves:
\begin { enumerate} [label={ (\arabic * )} ]
\item
$ V \rightarrow AVA ^ T $ ,
where $ A $ is a matrix
with integer coefficients,
\item
$ V \rightarrow
\begin { pmatrix}
\begin { array} { c|c}
V &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 0\\
1 & 0
\end { matrix}
\end { array}
\end { pmatrix} \quad $
or
$ \quad
V \rightarrow
\begin { pmatrix}
\begin { array} { c|c}
V &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 1\\
0 & 0
\end { matrix}
\end { array}
\end { pmatrix} ,$
\item
inverse of (2).
\end { enumerate}
2019-07-03 07:06:01 +02:00
\end { theorem}