small progress
@ -56,8 +56,8 @@
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{ball_4_pushed_seifert.pdf}}%
|
||||
\put(0.59916734,0.31598118){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.90744424\unitlength}\raggedright $g(F) = g_4(K)$ \end{minipage}}}%
|
||||
\put(0.6042564,0.37550965){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.85985262\unitlength}\raggedright $F \subset B^4$ \end{minipage}}}%
|
||||
\put(0.6549243,0.82850612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.03767986\unitlength}\raggedright $S^3$ \end{minipage}}}%
|
||||
\put(0.72361375,0.82850612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.03767986\unitlength}\raggedright $S^3$ \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{ball_4_pushed_seifert.pdf}}%
|
||||
\put(0.81311761,0.76290458){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30641817\unitlength}\raggedright $\Sigma$\end{minipage}}}%
|
||||
\put(0.87332011,0.71316438){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20662167\unitlength}\raggedright $\Sigma$\end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
||||
|
@ -1538,13 +1538,13 @@
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="1.3101783"
|
||||
inkscape:cx="251.59804"
|
||||
inkscape:cy="115.99934"
|
||||
inkscape:zoom="2.2812777"
|
||||
inkscape:cx="159.21118"
|
||||
inkscape:cy="140.71061"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1393"
|
||||
inkscape:window-width="1392"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="1"
|
||||
@ -1624,33 +1624,30 @@
|
||||
style="font-size:40px;line-height:1.25">$\Sigma$</flowPara></flowRoot> <g
|
||||
id="g10730"
|
||||
transform="translate(25.897865,59.078401)" />
|
||||
<g
|
||||
id="g289">
|
||||
<path
|
||||
sodipodi:nodetypes="cccccc"
|
||||
id="path9101"
|
||||
d="m 416.49808,499.55756 c -26.63001,-2.11461 -50.6783,50.77833 -88.28511,38.90195 -7.37236,13.46859 -23.87785,33.10951 -43.56463,35.68589 -79.2826,8.98881 -24.17029,-77.95408 27.02921,-67.75988 11.68333,-29.62695 65.44534,-44.22108 83.39332,-49.66105 21.15944,18.67952 23.66311,50.14311 21.42721,42.83309 z"
|
||||
inkscape:connector-curvature="0"
|
||||
style="opacity:1;fill:#eed7c7;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.90591824;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
inkscape:connector-curvature="0" />
|
||||
d="m 416.49808,499.55756 c -26.63001,-2.11461 -50.6783,50.77833 -88.28511,38.90195 -7.37236,13.46859 -23.87785,33.10951 -43.56463,35.68589 -79.2826,8.98881 -24.17029,-77.95408 27.02921,-67.75988 11.68333,-29.62695 65.44534,-44.22108 83.39332,-49.66105 21.15944,18.67952 23.66311,50.14311 21.42721,42.83309 z"
|
||||
id="path9101"
|
||||
sodipodi:nodetypes="cccccc" />
|
||||
<ellipse
|
||||
transform="matrix(0.85256588,-0.52261976,0.54255035,0.84002328,0,0)"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient9112);stroke-width:0.33854538;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:0.33854534, 0.33854534;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="ellipse9110"
|
||||
cx="-78.389603"
|
||||
cy="621.74268"
|
||||
ry="12.503712"
|
||||
rx="10.008261"
|
||||
ry="12.503712" />
|
||||
cy="621.74268"
|
||||
cx="-78.389603"
|
||||
id="ellipse9110"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient9112);stroke-width:0.33854538;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:0.33854534, 0.33854534;stroke-dashoffset:0;stroke-opacity:1"
|
||||
transform="matrix(0.85256588,-0.52261976,0.54255035,0.84002328,0,0)" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
style="opacity:1;fill:#ffe5d3;fill-opacity:0.75416667;fill-rule:evenodd;stroke:url(#linearGradient1330);stroke-width:0;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="path9103"
|
||||
d="m 315.49148,522.54713 c 1.38896,2.15051 -0.35293,5.61566 -4.03452,9.51939 -3.68157,3.90372 -9.30288,8.24597 -15.67273,12.15066 -6.36985,3.9047 -12.89894,6.39937 -18.1828,7.38028 -5.28386,0.9809 -12.75293,1.26155 -14.14189,-0.88895 2.49545,-16.56079 27.23155,-30.10491 38.815,-30.9651 6.53656,-0.43034 11.8279,0.6531 13.21694,2.80372 z"
|
||||
id="path9103" />
|
||||
style="opacity:1;fill:#fcdbc4;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient1330);stroke-width:0;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2789"
|
||||
style="opacity:1;fill:#fcdbc4;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient1332);stroke-width:0;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 382.22116,486.21458 c 1.38896,2.15051 -0.35294,5.61565 -4.03451,9.51938 -3.68158,3.90373 -9.30288,8.24597 -15.67273,12.15067 -6.36985,3.90469 -12.89895,6.39936 -18.18281,7.38027 -5.28385,0.98091 -12.75293,1.26156 -14.14189,-0.88895 2.49546,-16.56078 27.23155,-30.10492 38.81499,-30.9651 6.53658,-0.43033 11.82791,0.6531 13.21695,2.80373 z"
|
||||
style="opacity:1;fill:#fde3d1;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient1332);stroke-width:0;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||
</g>
|
||||
id="path2789"
|
||||
inkscape:connector-curvature="0" />
|
||||
<g
|
||||
id="g283">
|
||||
<path
|
||||
@ -1691,7 +1688,7 @@
|
||||
width="485.07117"
|
||||
id="rect600" /></flowRegion><flowPara
|
||||
id="flowPara608">$F \subset B^4$ </flowPara></flowRoot> <flowRoot
|
||||
transform="matrix(0.64625923,0,0,1.300723,-348.71577,744.08821)"
|
||||
transform="matrix(0.64625923,0,0,1.300723,-327.96478,744.08821)"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.99982834px;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot616"
|
||||
xml:space="preserve"><flowRegion
|
||||
@ -1713,7 +1710,7 @@
|
||||
xml:space="preserve"
|
||||
id="flowRoot5478"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="matrix(0.58849131,0,0,1.1965758,83.503317,304.29587)"><flowRegion
|
||||
transform="matrix(0.39682718,0,0,1.0388416,203.44123,336.79275)"><flowRegion
|
||||
id="flowRegion5480"><rect
|
||||
id="rect5482"
|
||||
width="157.29803"
|
||||
|
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 68 KiB |
@ -9,9 +9,9 @@
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
width="121.24772mm"
|
||||
height="95.827072mm"
|
||||
viewBox="0 0 121.24772 95.827072"
|
||||
version="1.1"
|
||||
id="svg5789"
|
||||
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||
@ -27,7 +27,7 @@
|
||||
add_stroke_width="true"
|
||||
add_other_stroke_width="true"
|
||||
switcher_size="15"
|
||||
crossing_points_vector="113.26038 | 63.22207 | 0 | 0 | 0 | 5 | 0.633423 | 6.3020551 | 1 | 82.906761 | 61.439667 | 0 | 0 | 1 | 4 | 1.0610123 | 4.7409223 | 1 | 102.82565 | 143.18748 | 0 | 0 | 2 | 7 | 2.6991376 | 7.6360993 | -1 | 98.153959 | 79.896655 | 0 | 0 | 3 | 6 | 4.2334577 | 6.6088723 | -1" />
|
||||
crossing_points_vector="113.40108 | 63.222085 | 0 | 0 | 0 | 5 | 0.6312852 | 6.3026953 | 1 | 82.948274 | 61.432802 | 0 | 0 | 1 | 4 | 1.060697 | 4.7438172 | 1 | 98.060004 | 143.61611 | 0 | 0 | 2 | 7 | 2.6579504 | 7.5171585 | -1 | 98.343835 | 80.092075 | 0 | 0 | 3 | 6 | 4.2295883 | 6.6117698 | -1" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
@ -36,17 +36,21 @@
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.98994949"
|
||||
inkscape:cx="374.55079"
|
||||
inkscape:cy="771.00987"
|
||||
inkscape:zoom="0.49497475"
|
||||
inkscape:cx="62.895725"
|
||||
inkscape:cy="200.22733"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="770"
|
||||
inkscape:window-height="566"
|
||||
inkscape:window-x="386"
|
||||
inkscape:window-y="344"
|
||||
inkscape:window-maximized="0" />
|
||||
inkscape:window-width="1397"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="1"
|
||||
inkscape:window-maximized="1"
|
||||
fit-margin-top="0"
|
||||
fit-margin-left="0"
|
||||
fit-margin-right="0"
|
||||
fit-margin-bottom="0" />
|
||||
<metadata
|
||||
id="metadata5786">
|
||||
<rdf:RDF>
|
||||
@ -62,14 +66,17 @@
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
id="layer1"
|
||||
transform="translate(-37.022916,-50.153379)">
|
||||
<path
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:1;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
inkscape:path-effect="#path-effect6337"
|
||||
inkscape:original-d="M 148.88683,83.500863 C 131.76268,61.04025 111.94435,63.165808 90.091584,61.513101 49.291024,58.427388 34.534598,100.34022 38.022692,116.77704 c 4.864027,22.92057 80.406158,41.59453 81.439688,10.77434 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 94.491283,73.171941 73.788477,63.287938 87.255856,54.112302 c 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 20.92401,9.626516 -27.375933,14.936512 -24.45218,73.596359 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724727 z"
|
||||
inkscape:original-d="M 148.88683,83.500863 C 131.76268,61.04025 111.94435,63.165808 90.091584,61.513101 49.291024,58.427388 34.534598,100.34022 38.022692,116.77704 c 4.864027,22.92057 80.406158,41.59453 81.439688,10.77434 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 94.491283,73.171941 73.788477,63.287938 87.255856,54.112302 c 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 20.92401,9.626516 -27.375933,14.936512 -24.45218,73.596358 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724726 z"
|
||||
id="path6334"
|
||||
d="m 96.897334,82.177379 c -6.658672,9.98906 -12.321045,24.237561 -11.261944,45.486521 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724726 v -1e-6 C 138.88768,70.385645 127.96992,65.653412 116.26489,63.65693 m -5.79707,-0.783845 c -6.5683,-0.68851 -13.367638,-0.829929 -20.376236,-1.359984 -40.80056,-3.085713 -55.556986,38.827119 -52.068892,55.263939 2.869929,13.52386 30.345523,25.56931 52.603724,26.84198 m 12.951244,-0.68918 c 9.14702,-1.75908 15.58793,-6.52808 15.88472,-15.37846 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 99.240422,79.311995 86.960678,70.878059 83.709025,63.893988 M 83.14149,58.917996 c 0.508718,-1.648163 1.81235,-3.237277 4.114366,-4.805694 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 12.23939,5.630982 0.79308,9.78502 -10.231935,24.003757"
|
||||
d="m 96.897334,82.177379 c -6.658672,9.98906 -12.321045,24.237561 -11.261944,45.486521 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724726 v -1e-6 C 138.88768,70.385645 127.96992,65.653412 116.26489,63.65693 m -5.79707,-0.783845 c -6.5683,-0.68851 -13.367638,-0.829929 -20.376236,-1.359984 -40.80056,-3.085713 -55.556986,38.827119 -52.068892,55.263939 2.869929,13.52386 30.345524,25.56931 52.603725,26.84198 m 12.951243,-0.68919 c 9.14702,-1.75907 15.58793,-6.52807 15.88472,-15.37845 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 99.240422,79.311995 86.960678,70.878059 83.709025,63.893988 M 83.14149,58.917996 c 0.508718,-1.648163 1.81235,-3.237277 4.114366,-4.805694 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 12.23939,5.630982 0.79308,9.78502 -10.231935,24.003757"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="ssssssssss" />
|
||||
sodipodi:nodetypes="ssssssssss"
|
||||
inkscape:export-xdpi="90"
|
||||
inkscape:export-ydpi="90" />
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 3.9 KiB After Width: | Height: | Size: 4.1 KiB |
@ -52,10 +52,10 @@
|
||||
\put(0.36109826,0.62183275){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.42889331,0.62471825){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{satellite.pdf}}%
|
||||
\put(0.23032975,0.3332003){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02367358\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||
\put(0.23032974,0.3332003){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02367358\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{satellite.pdf}}%
|
||||
\put(0.21066574,0.13578336){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04131521\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{satellite.pdf}}%
|
||||
\put(0.4650512,0.44886999){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02273321\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\put(0.46450745,0.42798995){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.0227986\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
||||
|
@ -29,7 +29,7 @@
|
||||
add_stroke_width="true"
|
||||
add_other_stroke_width="true"
|
||||
switcher_size="15"
|
||||
crossing_points_vector="1290.2398 | 865.17554 | 0 | 0 | 0 | 3 | 8.455287 | 17.341895 | -1 | 779.3585 | 965.3581 | 0 | 0 | 1 | 4 | 9.2288445 | 22.421573 | 1 | 310.08513 | 1080.6316 | 0 | 0 | 2 | 5 | 10.502664 | 24.831919 | 1" />
|
||||
crossing_points_vector="1521.3825 | 1359.9656 | 3 | 4 | 0 | 0 | 6 | 0 | -1 | 1495.213 | 1248.9664 | 4 | 5 | 1 | 0 | 1 | 2.7869328e-13 | 1" />
|
||||
<inkscape:path-effect
|
||||
effect="knot"
|
||||
id="path-effect1071"
|
||||
@ -39,7 +39,7 @@
|
||||
add_stroke_width="true"
|
||||
add_other_stroke_width="true"
|
||||
switcher_size="15"
|
||||
crossing_points_vector="1313.5623 | 805.02533 | 0 | 0 | 0 | 3 | 9.4104594 | 19.279706 | 1 | 829.65847 | 898.34753 | 0 | 0 | 1 | 4 | 10.366394 | 24.295043 | -1 | 326.55758 | 1007.7342 | 0 | 0 | 2 | 5 | 11.326548 | 28.465011 | -1" />
|
||||
crossing_points_vector="1313.5623 | 805.02533 | 0 | 0 | 0 | 3 | 8.4104594 | 18.279706 | -1 | 829.65847 | 898.34753 | 0 | 0 | 1 | 4 | 9.3663943 | 23.295043 | -1 | 326.55758 | 1007.7342 | 0 | 0 | 2 | 5 | 10.326548 | 27.465011 | -1" />
|
||||
<inkscape:path-effect
|
||||
effect="knot"
|
||||
id="path-effect4946"
|
||||
@ -1014,13 +1014,13 @@
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.04375"
|
||||
inkscape:cx="6065.6295"
|
||||
inkscape:cy="1755.3346"
|
||||
inkscape:zoom="0.061871843"
|
||||
inkscape:cx="7746.9653"
|
||||
inkscape:cy="2596.5371"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
inkscape:current-layer="g5621"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1397"
|
||||
inkscape:window-width="1388"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="1"
|
||||
@ -1142,7 +1142,8 @@
|
||||
id="g5621"
|
||||
transform="matrix(0.84767722,0,0,0.76146458,8.6421048,25.088837)">
|
||||
<g
|
||||
id="g5611">
|
||||
id="g5611"
|
||||
transform="matrix(1.0028764,0,0,0.898201,-2.9367161,108.10102)">
|
||||
<g
|
||||
id="g5630">
|
||||
<g
|
||||
@ -1156,30 +1157,29 @@
|
||||
<path
|
||||
transform="translate(-1.1458333e-5)"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:129;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="M 765.24808,1060.5832 C 679.95949,1463.259 310.50397,1132.0868 205.20961,827.29538 188.38457,778.5926 178.30436,730.5634 177.20611,686.30945 c -0.0658,-2.65078 -0.0993,-5.28803 -0.10019,-7.91106 -0.004,-12.28597 0.7096,-24.26014 2.19015,-35.85402 6.07514,-47.57297 25.0637,-88.74297 60.37901,-118.77763 60.30655,-51.289 418.73138,-242.90209 704.35961,-333.75866 210.07681,-66.82412 341.57331,-20.61673 509.98981,60.81504 121.0743,54.79892 231.2708,243.87612 224.5559,351.57191 -10.43,79.88101 -103.4676,145.42527 -243.6785,191.12972 -11.1625,3.63864 -22.5961,7.21679 -34.2797,10.7389 m -229.0529,57.50598 C 930.86965,913.97051 652.4209,957.29897 445.04061,1014.9275 m -225.07865,87.4927 c -105.63019,64.5969 -122.489485,147.478 19.09095,263.4791 489.16094,400.7841 679.63771,358.0402 853.65379,287.9362 369.2597,-148.7597 512.7723,-332.0283 373.8001,-508.1644 C 1337.3164,981.93272 1285.7346,816.66932 1202.6729,656.37656 1011.317,287.09703 923.8514,587.63436 846.84105,808.04246"
|
||||
d="M 765.24808,1060.5832 C 679.95949,1463.259 310.50397,1132.0868 205.20961,827.29538 188.38457,778.5926 178.30436,730.5634 177.20611,686.30945 c -0.0658,-2.65078 -0.0993,-5.28803 -0.10019,-7.91106 -0.004,-12.28597 0.7096,-24.26014 2.19015,-35.85402 6.07514,-47.57297 25.0637,-88.74297 60.37901,-118.77763 60.30655,-51.289 418.73138,-242.90209 704.35961,-333.75866 210.07681,-66.82412 341.57331,-20.61673 509.98981,60.81504 121.0743,54.79892 231.2708,243.87612 224.5559,351.57191 -10.43,79.88101 -103.4676,145.42527 -243.6785,191.12972 -11.1625,3.63864 -22.5961,7.21679 -34.2797,10.7389 m -229.0529,57.50598 C 930.86965,913.97051 652.4209,957.29897 445.04061,1014.9275 m -225.07865,87.4927 c -105.63019,64.5969 -122.489485,147.478 19.09095,263.4791 489.16094,400.7841 679.63771,358.0402 853.65379,287.9362 369.2597,-148.7597 512.7723,-332.0283 373.8001,-508.1644 -129.1904,-163.73838 -180.7722,-329.00175 -263.8339,-489.29454 -30.5572,-58.96938 -58.4651,-100.85833 -84.1043,-128.72068 -25.1091,-27.28629 -48.0423,-41.11999 -69.157,-44.36939 -8.0787,-1.24326 -15.8912,-0.93706 -23.4574,0.7579 -22.1788,4.96842 -42.24214,21.86978 -60.69416,46.65773 -47.20506,63.41402 -83.86451,178.44342 -118.41899,277.34034"
|
||||
id="path4943"
|
||||
inkscape:path-effect="#path-effect4946"
|
||||
inkscape:original-d="m 805.49045,915.41814 c -12.5753,27.49862 -27.36648,71.03441 -34.84188,116.36916 -73.64756,446.6373 -457.73589,107.2719 -565.43896,-204.49192 -16.82504,-48.70278 -26.90525,-96.73198 -28.0035,-140.98593 -0.0658,-2.65078 -0.0993,-5.28803 -0.10019,-7.91106 -0.004,-12.28597 0.7096,-24.26014 2.19015,-35.85402 6.07514,-47.57297 25.0637,-88.74297 60.37901,-118.77763 60.30655,-51.289 418.73138,-242.90209 704.35961,-333.75866 210.07681,-66.82412 341.57331,-20.61673 509.98981,60.81504 121.0743,54.79892 231.2708,243.87612 224.5559,351.57191 -10.43,79.88101 -103.4676,145.42527 -243.6785,191.12972 -522.86854,170.43909 -1640.40225,208.13885 -1195.84899,572.37455 489.16094,400.7841 679.63771,358.0402 853.65379,287.9362 369.2597,-148.7597 512.7723,-332.0283 373.8001,-508.1644 C 1337.3164,981.93272 1285.7346,816.66932 1202.6729,656.37656 976.67529,220.24532 895.58791,718.40042 805.49045,915.41814 Z"
|
||||
inkscape:original-d="m 805.49045,915.41814 c -12.57529,27.49862 -27.36648,71.03441 -34.84188,116.36916 -73.64756,446.6373 -457.73589,107.2719 -565.43896,-204.49192 -16.82504,-48.70278 -26.90525,-96.73198 -28.0035,-140.98593 -0.0658,-2.65078 -0.0993,-5.28803 -0.10019,-7.91106 -0.004,-12.28597 0.7096,-24.26014 2.19015,-35.85402 6.07514,-47.57297 25.0637,-88.74297 60.37901,-118.77763 60.30655,-51.289 418.73138,-242.90209 704.35961,-333.75866 210.07681,-66.82412 341.57331,-20.61673 509.98981,60.81504 121.0743,54.79892 231.2708,243.87612 224.5559,351.57191 -10.43,79.88101 -103.4676,145.42527 -243.6785,191.12972 -522.86854,170.43909 -1640.40225,208.13885 -1195.84899,572.37455 489.16094,400.7841 679.63771,358.0402 853.65379,287.9362 369.2597,-148.7597 512.7723,-332.0283 373.8001,-508.1644 -129.1904,-163.73838 -180.7722,-329.00175 -263.8339,-489.29454 -30.5572,-58.96938 -58.4651,-100.85833 -84.1043,-128.72068 -25.1091,-27.28629 -48.0423,-41.11999 -69.157,-44.36939 -8.0787,-1.24326 -15.8912,-0.93706 -23.4574,0.7579 -22.1788,4.96842 -42.24214,21.86978 -60.69416,46.65773 -66.25049,88.99914 -111.72923,279.6653 -159.76959,384.71602 z"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="ssssssssccssssss" />
|
||||
sodipodi:nodetypes="ssssssssccssssssssss" />
|
||||
<path
|
||||
transform="translate(-1.1458333e-5)"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#f8f627;stroke-width:8.88000011;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173"
|
||||
d="m 243.05356,839.36638 c 12.74099,41.92128 -38.40683,41.45269 -68.33533,19.53784 C 146.89989,802.46879 139.34662,713.74307 139.9242,652.70758 139.89181,580.35032 219.98646,540.00111 272.33587,516.08104 469.68861,427.44538 726.63407,281.10841 880.54551,237.74009 938.51223,216.3919 992.1577,191.43425 1049.0181,183.2683 c 47.6227,-10.35249 92.4975,-5.42883 135.9436,4.00119 99.1693,27.03039 215.7599,54.54746 301.7687,103.41474 178.4619,110.68281 288.0587,241.64448 131.538,415.78937 -81.4833,71.56132 -190.9335,118.68261 -306.4103,152.53485 m -43.3697,12.04867 c -140.964,37.12876 -286.74084,56.90781 -398.59995,79.057 -23.22062,4.17549 -45.85352,7.97414 -68.0902,11.60645 m -44.87787,7.24606 c -90.80621,14.60232 -176.99185,28.80166 -272.42431,57.83937 -117.42083,32.9224 -234.84353,70.6825 -331.32412,117.3107 -153.48621309,127.0034 159.08065,333.8626 247.66204,396.9757 124.15005,87.4968 258.26991,156.3962 358.39063,190.1682 96.20003,24.3701 199.0359,16.3222 285.85968,-12.7275 136.6161,-48.3336 258.6654,-113.4 363.2321,-204.2869 52.5898,-54.5451 131.347,-107.2135 138.4156,-182.7689 -43.722,-134.8028 -125.4934,-253.7451 -197.9316,-362.17895 -65.9783,-93.80314 -101.8274,-218.17045 -143.9111,-302.8439 -33.011,-67.80414 -97.5029,-150.77362 -147.4949,-192.15855 -34.3111,-25.9692 -53.2149,-35.84777 -79.13477,-5.6672 -50.03003,61.1605 -94.05851,132.4686 -127.80445,206.17529 -30.25607,66.08421 -52.2464,134.09656 -62.88558,198.45209 -10.41563,62.19218 -6.86636,156.43122 -22.50529,234.13402 -17.07807,99.494 -132.15197,184.7629 -219.39979,172.3728 -80.43896,-15.7758 -158.72374,-105.2935 -220.63039,-180.8128 m -29.89285,-36.6387 c -7.39539,-9.0233 -14.46289,-17.5434 -21.1697,-25.3581 -55.26312,-44.06128 -70.88634,-124.05585 -78.95751,-139.39182"
|
||||
id="path1067"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cccccccccccccccccccccsccccc"
|
||||
inkscape:path-effect="#path-effect5424"
|
||||
inkscape:original-d="m 243.05356,839.36638 c 12.74099,41.92128 -38.40683,41.45269 -68.33533,19.53784 C 146.89989,802.46879 139.34662,713.74307 139.9242,652.70758 139.89181,580.35032 219.98646,540.00111 272.33587,516.08104 469.68861,427.44538 726.63407,281.10841 880.54551,237.74009 938.51223,216.3919 992.1577,191.43425 1049.0181,183.2683 c 47.6227,-10.35249 92.4975,-5.42883 135.9436,4.00119 99.1693,27.03039 215.7599,54.54746 301.7687,103.41474 178.4619,110.68281 288.0587,241.64448 131.538,415.78937 -190.1063,166.95756 -532.4422,200.88275 -748.37995,243.64052 -135.79652,24.41866 -251.49259,35.94952 -385.39238,76.69188 -117.42083,32.9224 -234.84353,70.6825 -331.32412,117.3107 -153.48621309,127.0034 159.08065,333.8626 247.66204,396.9757 124.15005,87.4968 258.26991,156.3962 358.39063,190.1682 96.20003,24.3701 199.0359,16.3222 285.85968,-12.7275 136.6161,-48.3336 258.6654,-113.4 363.2321,-204.2869 52.5898,-54.5451 131.347,-107.2135 138.4156,-182.7689 -43.722,-134.8028 -125.4934,-253.7451 -197.9316,-362.17895 -65.9783,-93.80314 -101.8274,-218.17045 -143.9111,-302.8439 -33.011,-67.80414 -97.5029,-150.77362 -147.4949,-192.15855 -34.3111,-25.9692 -53.2149,-35.84777 -79.13477,-5.6672 -50.03003,61.1605 -94.05851,132.4686 -127.80445,206.17529 -30.25607,66.08421 -52.2464,134.09656 -62.88558,198.45209 -10.41563,62.19218 -6.86636,156.43122 -22.50529,234.13402 -17.07807,99.494 -132.15197,184.7629 -219.39979,172.3728 C 441.01324,1259.2385 340.00813,1113.8981 273.97158,1036.9533 218.70846,992.89202 203.08524,912.89745 195.01407,897.56148" />
|
||||
inkscape:original-d="M 243.05355,839.36638 C 127.87166,907.34515 109.6073,690.1742 149.72328,620.10991 m 66.27429,-73.28639 c 77.76115,-57.81985 176.48804,-92.20342 266.36815,-131.38019 202.9477,-88.46046 402.87541,-234.54329 615.40468,-233.74815 174.3245,0.65221 368.8061,70.35757 504.0409,195.50333 m 61.9412,64.83815 c 64.7584,100.51538 -26.073,220.19736 -79.0615,294.04237 -42.702,59.50959 -109.6754,65.79402 -169.3976,87.90389 m -241.1777,69.49617 C 935.41011,944.58448 691.85526,971.88867 455.69303,1034.9843 m -235.86592,79.5368 c -22.49596,9.2224 -44.76202,19.0174 -66.65517,29.5956 m -41.57605,86.3371 c 46.03831,174.0731 221.36501,276.9435 355.88961,355.013 178.18585,103.4078 379.29663,169.2181 570.543,134.44 167.175,-30.4007 341.0171,-125.7787 460.8413,-292.0167 12.6581,-17.5611 22.8411,-43.5018 22.5127,-67.9245 M 1495.213,1248.9664 C 1319.8594,927.05723 1261.5168,693.46224 1087.476,492.63753 1040.9533,438.10834 1006.4787,422.15631 961.36379,475.1135 899.86488,548.38952 876.81349,701.44976 834.77601,799.86295 m -63.49119,268.74945 c -24.0279,68.0336 -64.34751,132.3491 -123.35805,175.223 m -149.67539,18.5669 C 364.09652,1173.6852 266.44615,1039.6509 195.01406,897.56148"
|
||||
id="path1067"
|
||||
d="M 243.05355,839.36638 C 127.87166,907.34515 109.6073,690.1742 149.72328,620.10991 m 66.27429,-73.28639 c 77.76115,-57.81985 176.48804,-92.20342 266.36815,-131.38019 202.9477,-88.46046 402.87541,-234.54329 615.40468,-233.74815 174.3245,0.65221 368.8061,70.35757 504.0409,195.50333 m 61.9412,64.83815 c 64.7584,100.51538 -26.073,220.19736 -79.0615,294.04237 -42.702,59.50959 -109.6754,65.79402 -169.3976,87.90389 m -241.1777,69.49617 C 935.41011,944.58448 691.85526,971.88867 455.69303,1034.9843 m -235.86592,79.5368 c -22.49596,9.2224 -44.76202,19.0174 -66.65517,29.5956 m -41.57605,86.3371 c 46.03831,174.0731 221.36501,276.9435 355.88961,355.013 178.18585,103.4078 379.29663,169.2181 570.543,134.44 167.175,-30.4007 341.0171,-125.7787 460.8413,-292.0167 12.6581,-17.5611 22.8411,-43.5018 22.5127,-67.9245 M 1495.213,1248.9664 C 1319.8594,927.05723 1261.5168,693.46224 1087.476,492.63753 1040.9533,438.10834 1006.4787,422.15631 961.36379,475.1135 899.86488,548.38952 876.81349,701.44976 834.77601,799.86295 m -63.49119,268.74945 c -24.0279,68.0336 -64.34751,132.3491 -123.35805,175.223 m -149.67539,18.5669 C 364.09652,1173.6852 266.44615,1039.6509 195.01406,897.56148"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cccaaccaccccccaaaccccccccc" />
|
||||
<path
|
||||
transform="translate(-1.1458333e-5)"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#f8f627;stroke-width:8.88000011;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173"
|
||||
d="M 240.83546,794.19261 C 243.67205,779.75986 227.20018,738.2816 209.57273,717.21156 191.97988,696.18288 176.45175,663.23204 177.42627,632.49111 174.3305,571.56869 189.13571,533.82543 210.67275,508.45848 312.87395,433.4008 438.64607,373.98517 545.03327,317.62643 736.7331,235.16594 939.49344,139.76842 1131.5316,136.11845 c 99.3897,-4.10579 185.4488,30.55851 268.5919,64.00153 76.9925,26.36532 145.6995,76.13993 193.4301,134.46181 61.8404,76.47896 77.8371,158.33086 48.4365,251.35728 -15.2855,47.65439 -47.8982,86.45316 -91.2434,118.30193 -153.7281,112.95499 -442.4532,138.49006 -571.97661,161.61584 -108.07585,30.588 -304.37736,55.93245 -482.87955,95.97053 -51.70073,11.59649 -101.90829,24.42561 -148.04655,38.97183 m -42.37052,14.2947 c -96.35706,34.8768 -168.55383,79.0073 -188.22921,137.7247 1.86489,181.1476 290.10002,320.8139 413.73781,394.9438 118.40968,70.0694 238.89249,120.7678 345.79981,126.0179 90.96824,-0.2059 179.94462,-25.8047 252.32022,-55.3022 138.4299,-89.4676 323.4285,-175.4209 397.0394,-311.8447 16.9103,-32.5245 12.2123,-69.7308 -3.3989,-108.8907 -14.6344,-36.7096 -38.8591,-75.1358 -63.8635,-113.0311 -47.7453,-66.1795 -78.7847,-140.69305 -111.3469,-208.60523 -8.139,-16.97525 -16.2326,-33.86535 -24.2474,-50.66339 m -19.403,-40.84612 c -25.266,-53.47138 -49.438,-105.93485 -71.4096,-157.16204 -24.4185,-55.0877 -57.2705,-109.11525 -93.2073,-143.93004 -45.408,-40.88904 -88.3435,-49.56786 -123.2948,-7.52069 -29.53466,35.89018 -61.18667,94.10865 -83.28372,136.79205 -50.33954,83.56277 -60.1325,180.91657 -91.54658,248.52973 -2.06671,4.33414 -3.85299,8.78602 -5.40534,13.33446 m -9.34211,46.89278 c -2.51793,23.94796 -3.11714,48.53887 -7.05354,71.38189 -4.86657,29.7778 -9.77423,61.7051 -15.98155,93.033 -16.72337,82.6072 -47.12478,145.1137 -98.58513,176.9087 C 581.02737,1291.2236 484.77565,1224.2303 409.00585,1130.393 330.74759,1048.9233 302.07672,948.57081 268.86154,861.59219 243.83447,803.02052 158.92573,734.00372 196.59766,849.71523"
|
||||
d="M 240.83546,794.19261 C 243.67205,779.75986 227.20018,738.2816 209.57273,717.21156 165.10554,659.92341 168.28219,559.99294 210.67275,508.45848 312.87395,433.4008 438.64607,373.98517 545.03327,317.62643 736.7331,235.16594 939.49344,139.76842 1131.5316,136.11845 c 99.3897,-4.10579 185.4488,30.55851 268.5919,64.00153 84.4689,39.34 165.1072,85.08532 216.7549,166.98853 14.3385,22.86151 24.7543,46.25314 31.2587,70.32041 12.5983,46.61621 10.5222,95.76714 -6.147,148.51015 -15.2855,47.65439 -47.8982,86.45313 -91.2434,118.30193 -41.8296,30.73516 -93.6541,54.99784 -149.5468,74.50067 m -238.1311,57.88818 c -251.33084,49.29933 -497.87374,82.08124 -724.63591,138.8042 m -246.59552,93.37745 c -20.17998,13.0588 -37.15297,27.1286 -50.19629,42.3452 -42.427521,43.8998 -12.15216,114.3055 12.30773,152.9321 81.93099,127.1221 280.08473,225.5459 377.03326,283.6736 118.40968,70.0694 238.89249,120.7678 345.79981,126.0179 90.96824,-0.2059 179.94462,-25.8047 252.32022,-55.3022 138.4299,-89.4676 323.4285,-175.4209 397.0394,-311.8447 16.9103,-32.5245 12.2123,-69.7308 -3.3989,-108.8907 -14.6344,-36.7096 -38.8591,-75.1358 -63.8635,-113.0311 -47.7453,-66.1795 -78.7847,-140.69305 -111.3469,-208.60523 -40.9146,-85.3341 -80.681,-168.5162 -115.06,-248.67155 -24.4185,-55.0877 -57.2705,-109.11525 -93.2073,-143.93004 m -123.2948,-7.52069 c -60.97537,90.97483 -99.70981,220.76607 -140.23013,336.13634 m -70.0692,261.82117 C 779.2337,1167.4334 725.35386,1261.0008 670.09384,1268.4318 562.84518,1278.1942 477.5457,1215.2763 409.00585,1130.393 330.74759,1048.9233 302.07672,948.57081 268.86154,861.59219 243.83447,803.02052 158.92573,734.00372 196.59766,849.71523"
|
||||
id="path1069"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cscccccccscscccccsccccccccccccc"
|
||||
sodipodi:nodetypes="cccccccscsccccccccccsccccccccccc"
|
||||
inkscape:path-effect="#path-effect1071"
|
||||
inkscape:original-d="M 240.83546,794.19261 C 243.67205,779.75986 227.20018,738.2816 209.57273,717.21156 191.97988,696.18288 176.45175,663.23204 177.42627,632.49111 174.3305,571.56869 189.13571,533.82543 210.67275,508.45848 312.87395,433.4008 438.64607,373.98517 545.03327,317.62643 736.7331,235.16594 939.49344,139.76842 1131.5316,136.11845 c 99.3897,-4.10579 185.4488,30.55851 268.5919,64.00153 76.9925,26.36532 145.6995,76.13993 193.4301,134.46181 61.8404,76.47896 77.8371,158.33086 48.4365,251.35728 -15.2855,47.65439 -47.8982,86.45316 -91.2434,118.30193 -153.7281,112.95499 -442.4532,138.49006 -571.97661,161.61584 -108.07585,30.588 -304.37736,55.93245 -482.87955,95.97053 -183.02443,41.05243 -347.33624,97.55243 -378.64628,190.99123 1.86489,181.1476 290.10002,320.8139 413.73781,394.9438 118.40968,70.0694 238.89249,120.7678 345.79981,126.0179 90.96824,-0.2059 179.94462,-25.8047 252.32022,-55.3022 138.4299,-89.4676 323.4285,-175.4209 397.0394,-311.8447 16.9103,-32.5245 12.2123,-69.7308 -3.3989,-108.8907 -14.6344,-36.7096 -38.8591,-75.1358 -63.8635,-113.0311 -47.7453,-66.1795 -78.7847,-140.69305 -111.3469,-208.60523 -40.9146,-85.3341 -80.681,-168.5162 -115.06,-248.67155 -24.4185,-55.0877 -57.2705,-109.11525 -93.2073,-143.93004 -45.408,-40.88904 -88.3435,-49.56786 -123.2948,-7.52069 -29.53466,35.89018 -61.18667,94.10865 -83.28372,136.79205 -50.33954,83.56277 -60.1325,180.91657 -91.54658,248.52973 -18.80462,39.43557 -14.39256,88.61789 -21.80099,131.60913 -4.86657,29.7778 -9.77423,61.7051 -15.98155,93.033 -16.72337,82.6072 -47.12478,145.1137 -98.58513,176.9087 C 581.02737,1291.2236 484.77565,1224.2303 409.00585,1130.393 330.74759,1048.9233 302.07672,948.57081 268.86154,861.59219 243.83447,803.02052 158.92573,734.00372 196.59766,849.71523" />
|
||||
inkscape:original-d="M 240.83546,794.19261 C 243.67205,779.75986 227.20018,738.2816 209.57273,717.21156 165.10554,659.92341 168.28219,559.99294 210.67275,508.45848 312.87395,433.4008 438.64607,373.98517 545.03327,317.62643 736.7331,235.16594 939.49344,139.76842 1131.5316,136.11845 c 99.3897,-4.10579 185.4488,30.55851 268.5919,64.00153 84.4689,39.34 165.1072,85.08532 216.7549,166.98853 14.3385,22.86151 24.7543,46.25314 31.2587,70.32041 12.5983,46.61621 10.5222,95.76714 -6.147,148.51015 -15.2855,47.65439 -47.8982,86.45313 -91.2434,118.30193 -41.8296,30.73516 -93.6541,54.99784 -149.5468,74.50067 m -238.1311,57.88818 c -251.33084,49.29933 -497.87374,82.08124 -724.63591,138.8042 m -246.59552,93.37745 c -20.17998,13.0588 -37.15297,27.1286 -50.19629,42.3452 -42.427521,43.8998 -12.15216,114.3055 12.30773,152.9321 81.93099,127.1221 280.08473,225.5459 377.03326,283.6736 118.40968,70.0694 238.89249,120.7678 345.79981,126.0179 90.96824,-0.2059 179.94462,-25.8047 252.32022,-55.3022 138.4299,-89.4676 323.4285,-175.4209 397.0394,-311.8447 16.9103,-32.5245 12.2123,-69.7308 -3.3989,-108.8907 -14.6344,-36.7096 -38.8591,-75.1358 -63.8635,-113.0311 -47.7453,-66.1795 -78.7847,-140.69305 -111.3469,-208.60523 -40.9146,-85.3341 -80.681,-168.5162 -115.06,-248.67155 -24.4185,-55.0877 -57.2705,-109.11525 -93.2073,-143.93004 m -123.2948,-7.52069 c -60.97537,90.97483 -99.70981,220.76607 -140.23013,336.13634 m -70.0692,261.82117 C 779.2337,1167.4334 725.35386,1261.0008 670.09384,1268.4318 562.84518,1278.1942 477.5457,1215.2763 409.00585,1130.393 330.74759,1048.9233 302.07672,948.57081 268.86154,861.59219 243.83447,803.02052 158.92573,734.00372 196.59766,849.71523" />
|
||||
<ellipse
|
||||
style="opacity:0.89899998;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient5428);stroke-width:7.96366453;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="ellipse5426"
|
||||
|
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 57 KiB |
1209
images/satellite_v0.svg
Normal file
After Width: | Height: | Size: 58 KiB |
BIN
images/torus_alpha_beta.pdf
Normal file
59
images/torus_alpha_beta.pdf_tex
Normal file
@ -0,0 +1,59 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'torus_alpha_beta.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{427.6280729bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.41568239)%
|
||||
\put(0.40129099,4.95648293){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.37778386\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.63089219,0.39833514){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright ${\alpha \cdot \beta = - \beta \cdot \alpha}$\\ \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_alpha_beta.pdf}}%
|
||||
\put(0.94608607,0.30060216){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright $\beta$\\ \end{minipage}}}%
|
||||
\put(0.44999409,0.1665571){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright $\alpha$\\ \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{torus_alpha_beta.pdf}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
@ -11,15 +11,176 @@
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
width="150.85768mm"
|
||||
height="62.708881mm"
|
||||
viewBox="0 0 150.85768 62.708881"
|
||||
version="1.1"
|
||||
id="svg4590"
|
||||
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||
sodipodi:docname="torus_alpha_beta.svg">
|
||||
<defs
|
||||
id="defs4584">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Lstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker35445"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path35443"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#e7ed00;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(0.8,0,0,0.8,10,0)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<linearGradient
|
||||
id="linearGradient28957"
|
||||
osb:paint="solid">
|
||||
<stop
|
||||
style="stop-color:#ff0000;stop-opacity:1;"
|
||||
offset="0"
|
||||
id="stop28955" />
|
||||
</linearGradient>
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect28227"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect28195"
|
||||
is_visible="true" />
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Lstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker4967"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path4704"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#e90019;fill-opacity:1;fill-rule:evenodd;stroke:#e90019;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(0.8,0,0,0.8,10,0)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect2509"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
is_visible="true"
|
||||
id="path-effect2505"
|
||||
effect="spiro" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect2501"
|
||||
is_visible="true" />
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker1951"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1006"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#f4000e;fill-opacity:1;fill-rule:evenodd;stroke:#f4000e;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Lstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker1782"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path997"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#f4000e;fill-opacity:1;fill-rule:evenodd;stroke:#f4000e;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(0.8,0,0,0.8,10,0)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="TriangleInS"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker1613"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1611"
|
||||
d="M 5.77,0 -2.88,5 V -5 Z"
|
||||
style="fill:#e7ed00;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="scale(-0.2)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Mstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker1443"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1021"
|
||||
style="fill:#e7ed00;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||
transform="scale(0.6)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="TriangleInS"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="TriangleInS"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1136"
|
||||
d="M 5.77,0 -2.88,5 V -5 Z"
|
||||
style="fill:#e7ed00;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="scale(-0.2)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker1260"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1003"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#e7ed00;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(0.4,0,0,0.4,4,0)"
|
||||
inkscape:connector-curvature="0" />
|
||||
</marker>
|
||||
<linearGradient
|
||||
inkscape:collect="always"
|
||||
id="linearGradient8890">
|
||||
<stop
|
||||
style="stop-color:#f4000e;stop-opacity:1;"
|
||||
offset="0"
|
||||
id="stop8886" />
|
||||
<stop
|
||||
style="stop-color:#f4000e;stop-opacity:0;"
|
||||
offset="1"
|
||||
id="stop8888" />
|
||||
</linearGradient>
|
||||
<linearGradient
|
||||
id="linearGradient2711">
|
||||
<stop
|
||||
@ -936,6 +1097,16 @@
|
||||
y1="1120.1073"
|
||||
x2="282.93448"
|
||||
y2="1180.0529" />
|
||||
<linearGradient
|
||||
inkscape:collect="always"
|
||||
xlink:href="#linearGradient8890"
|
||||
id="linearGradient8892"
|
||||
x1="70.495163"
|
||||
y1="128.79823"
|
||||
x2="104.31213"
|
||||
y2="128.79823"
|
||||
gradientUnits="userSpaceOnUse"
|
||||
gradientTransform="matrix(-0.33096254,0,0,0.59686647,121.2635,39.322242)" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
@ -945,16 +1116,20 @@
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.98994949"
|
||||
inkscape:cx="400"
|
||||
inkscape:cy="560"
|
||||
inkscape:cx="325.85417"
|
||||
inkscape:cy="169.40785"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1388"
|
||||
inkscape:window-width="1392"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="1"
|
||||
inkscape:window-maximized="1" />
|
||||
inkscape:window-maximized="1"
|
||||
fit-margin-top="0"
|
||||
fit-margin-left="0"
|
||||
fit-margin-right="0"
|
||||
fit-margin-bottom="0" />
|
||||
<metadata
|
||||
id="metadata4587">
|
||||
<rdf:RDF>
|
||||
@ -970,7 +1145,8 @@
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
id="layer1"
|
||||
transform="translate(-18.706472,-63.135373)">
|
||||
<flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot5468"
|
||||
@ -987,19 +1163,18 @@
|
||||
style="font-size:40px;line-height:1.25">$\Sigma$</flowPara></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot9989"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="matrix(0.21303281,0,0,0.36711921,59.005059,-8.1856883)"><flowRegion
|
||||
id="flowRegion9991"><rect
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00004292px;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;opacity:1;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="matrix(0.17912758,0,0,0.43615418,16.135582,-5.1707124)"><flowRegion
|
||||
id="flowRegion9991"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00004292px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||
id="rect9993"
|
||||
width="237.64688"
|
||||
height="78.152328"
|
||||
x="548.66125"
|
||||
y="252.68971"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||
id="flowPara10007"
|
||||
style="font-size:40px;line-height:1.25">genus $3$</flowPara><flowPara
|
||||
id="flowPara10009"
|
||||
style="font-size:40px;line-height:1.25"> </flowPara></flowRoot> <path
|
||||
width="325.67853"
|
||||
height="82.441833"
|
||||
x="545.67712"
|
||||
y="162.61005"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00004292px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||
id="flowPara8754">${\alpha \cdot \beta = - \beta \cdot \alpha}$</flowPara><flowPara
|
||||
id="flowPara8756"> </flowPara></flowRoot> <path
|
||||
inkscape:connector-curvature="0"
|
||||
style="opacity:1;fill:#0000ff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.72794932;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 122.13879,116.23308 c -13.52702,-4.45866 -19.00699,8.33502 -30.118556,8.13268 -11.12496,-0.20259 -15.099242,-6.70018 -25.226358,-6.25289 -7.288887,0.32193 -15.732626,8.64704 -27.198945,6.85679 C 25.340713,122.74414 17.150649,112.45539 19.455027,99.960094 25.762102,65.760512 63.35906,82.588865 67.644752,82.374654 c 7.525169,-0.376129 16.271829,-4.34641 25.098045,-4.522043 8.045213,-0.160092 15.298503,6.050098 21.349383,4.089208 39.11447,-12.675718 54.36941,2.329237 53.14996,19.716831 -1.08968,15.53725 -14.60761,24.62618 -45.10335,14.57443 z"
|
||||
@ -1035,5 +1210,99 @@
|
||||
d="m 157.58635,96.056588 c 0,2.004098 -3.35464,7.441432 -6.20649,8.540932 -2.85184,1.09949 -6.7257,1.69793 -10.81379,1.69793 -4.08808,0 -7.83068,-1.0065 -10.55126,-2.514 -2.72058,-1.5075 -7.42221,-7.280825 -7.42221,-9.284922 m 1.37311,2.688899 c 3.66301,-11.360903 21.27073,-8.738754 26.85176,-4.572636 3.13304,2.387717 5.24405,5.276437 5.24405,7.280641"
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.5929842;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#e7ed00;stroke-width:1.63900006;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;marker-mid:url(#marker1613)"
|
||||
d="m 161.5787,100.74846 c -0.85658,5.46471 -6.60233,8.85019 -12.45902,11.16235 -6.36349,2.51224 -8.78206,-0.16204 -13.49464,-3.14457 -6.53803,-4.13783 -12.73052,-5.07984 -18.84208,-4.22412 -5.6819,0.79555 -11.35263,3.04727 -17.080811,5.97574 -5.110964,2.61293 -7.166405,3.82801 -12.46799,1.53857 -5.300862,-2.28912 -10.206762,-6.6887 -16.799409,-6.12929 -4.960573,0.42092 -6.626459,3.03846 1.997509,6.8924 15.615022,6.97815 20.353189,6.67666 33.213681,-0.20093 11.85732,-6.34111 23.09778,-2.738 24.63813,-0.52262 1.66113,2.38909 -6.66225,0.85598 -15.51044,1.64463 -6.79969,0.60607 -12.0992,3.33762 -17.548401,6.5376 -4.210371,2.47249 -9.935585,1.75822 -15.640571,-0.43407 -4.536915,-1.74343 -8.962797,-4.86368 -13.308975,-4.88614 -9.537559,-0.0493 -19.178934,7.99524 -28.193736,4.88062 -7.940438,-2.74342 -16.813754,-10.31147 -16.883316,-18.71219 -0.06112,-7.381241 7.586362,-14.265396 14.560106,-16.684754 9.31202,-3.230561 19.206071,5.43506 29.06254,5.451696 9.082016,0.01533 17.713793,-4.946122 26.795813,-4.932921 7.03229,0.01022 13.7053,3.791804 20.73705,3.879916 11.11822,0.139318 22.52169,-9.21828 32.93174,-5.311206 6.98376,2.621128 15.44796,9.849837 14.29282,17.219289 z"
|
||||
id="path8853"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="ssssssssssssssssssssss" />
|
||||
<path
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:url(#linearGradient8892);stroke-width:2.82523632;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 86.988324,116.19759 c 0.114214,3.35675 1.762143,8.14979 5.347853,8.23444 3.990234,-0.54487 5.316724,-5.10836 5.34785,-8.23444 -0.114211,-3.35675 -1.762139,-8.1498 -5.34785,-8.23445 -3.990236,0.54487 -5.316727,5.10838 -5.347853,8.23445 z"
|
||||
id="path8875"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="ccccc" />
|
||||
<flowRoot
|
||||
transform="matrix(0.17912758,0,0,0.43615418,63.685,9.5730583)"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;opacity:1;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot8902"
|
||||
xml:space="preserve"><flowRegion
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||
id="flowRegion8896"><rect
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||
y="162.61005"
|
||||
x="545.67712"
|
||||
height="82.441833"
|
||||
width="325.67853"
|
||||
id="rect8894" /></flowRegion><flowPara
|
||||
id="flowPara8904">$\beta$</flowPara><flowPara
|
||||
id="flowPara8906"> </flowPara></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot8916"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;line-height:0.01%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;opacity:1;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="matrix(0.17912758,0,0,0.43615418,-11.154286,29.794785)"><flowRegion
|
||||
id="flowRegion8910"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||
id="rect8908"
|
||||
width="325.67853"
|
||||
height="82.441833"
|
||||
x="545.67712"
|
||||
y="162.61005"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:12.00009251px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||
id="flowPara8918">$\alpha$</flowPara><flowPara
|
||||
id="flowPara8920"> </flowPara></flowRoot> <path
|
||||
style="fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#e90019;stroke-width:0.63300002;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#marker4967)"
|
||||
d="m 95.246649,105.43825 2.267857,9.37485"
|
||||
id="path4702"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28201"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28211"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28213"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28215"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28217"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28219"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28221"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
<path
|
||||
style="opacity:1;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#e90019;stroke-width:0.71541053;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d=""
|
||||
id="path28223"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(0.26458333,0,0,0.26458333,18.706472,63.135373)" />
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 55 KiB |
@ -211,7 +211,7 @@ S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \ti
|
||||
\]
|
||||
So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Analytically it can be describes as follow. \\
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\mid z_1 \vert, \vert z_2\vert) = 1.}
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\vert z_1 \vert, \vert z_2\vert) = 1.}
|
||||
$
|
||||
Define following sets:
|
||||
\begin{align*}
|
||||
@ -219,7 +219,7 @@ S_1 = \{ (z_1, z_2) \in S^3: \vert z_1 \vert = 0\} \cong S^1 \times D^2 ,\\
|
||||
S_2 = \{(z_1, z_2) \in S ^3: \vert z_2 \vert = 1 \} \cong D^2 \times S^1.
|
||||
\end{align*}
|
||||
The intersection
|
||||
$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$
|
||||
$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$.
|
||||
\begin{figure}[h]
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
@ -256,7 +256,9 @@ Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathb
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Let $N$ be a tubular neighbourhood of a knot $K$ and $M = S^3 \setminus N$ its complement. Then $\partial M = S^1 \times S^1$. Let $f : \pi_1(\partial M ) \longrightarrow \pi_1(M)$.
|
||||
If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$. There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$. By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that
|
||||
If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$.
|
||||
There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$.\\
|
||||
By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that
|
||||
$h\big|_{\partial D^2} = f \big|_{\partial D^2}$ and $h(\partial D^2) = \lambda$.
|
||||
Let $\Sigma$ be a union of the annulus and the image of $\partial D^2$.
|
||||
\\???? $g_3$?\\
|
||||
|
16
lec_3.tex
@ -92,7 +92,7 @@ TO WRITE REFERENCE!!!!!!!!!!!
|
||||
\end{proof}
|
||||
\noindent
|
||||
Consequences:
|
||||
\begin{enumerate}
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item
|
||||
the Alexander polynomial is the characteristic polynomial of $h$:
|
||||
\[
|
||||
@ -139,10 +139,16 @@ $g_3(K_1 \# K_2) = g_3(K_1) + g_3(K_2)$.
|
||||
A knot (link) is called alternating if it admits an alternating diagram.
|
||||
\end{definition}
|
||||
|
||||
\begin{example}
|
||||
Figure eight knot is an alternating knot. \hfill\\
|
||||
\includegraphics[width=0.5\textwidth]{figure8.png}
|
||||
\end{example}
|
||||
\begin{figure}[h]
|
||||
\fontsize{12}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\includegraphics[width=0.3\textwidth]{figure8.png}
|
||||
}
|
||||
\caption{Example: figure eight knot is an alternating knot.}
|
||||
\label{fig:fig8}
|
||||
\end{figure}
|
||||
|
||||
\begin{definition}
|
||||
A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced.
|
||||
\end{definition}
|
||||
|
72
lec_5.tex
@ -5,6 +5,8 @@ then $\sigma_K(t)
|
||||
is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\noindent
|
||||
We will use the following lemma.
|
||||
\begin{lemma}
|
||||
\label{lem:metabolic}
|
||||
If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and
|
||||
@ -34,7 +36,6 @@ Let $t \in S^1 \setminus \{1\}$. Then:
|
||||
\end{align*}
|
||||
As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$.
|
||||
\end{proof}
|
||||
?????????????????s\\
|
||||
\begin{corollary}
|
||||
If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = \sigma_{K^\prime}(t)$.
|
||||
\end{corollary}
|
||||
@ -69,9 +70,76 @@ If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S
|
||||
B & C
|
||||
\end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix.
|
||||
\end{lemma}
|
||||
|
||||
??????????????????????\\
|
||||
\begin{align*}
|
||||
\dim H_1(Z) = 2 n\\
|
||||
\dim H_1 (Y) = 2 n + 2 g\\
|
||||
\dim (\ker (H_1, Y) \longrightarrow H_1(\Omega)) = n + g\\
|
||||
Y = X \sum \Sigma
|
||||
\end{align*}
|
||||
\noindent
|
||||
If $\alpha, \beta \in \ker(H_1(\Sigma \longrightarrow H_1(\Omega))$, then ${\Lk(\alpha, \beta^+) = 0}$.
|
||||
\begin{corollary}
|
||||
If $t$ is nota ???? of $\det $ ????
|
||||
then $\vert \sigma_K(t) \vert \leq 2g$.\\
|
||||
\end{corollary}
|
||||
\noindent
|
||||
If there exists cobordism of genus $g$ between $K$ and $K^\prime$ like shown in Figure \ref{fig:genus_2_bordism}, then $K \# -K^\prime$ bounds a surface of genus $g$ in $B^4$.
|
||||
\begin{definition}
|
||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||
\end{definition}
|
||||
\noindent
|
||||
Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.
|
||||
\begin{example}
|
||||
\begin{itemize}
|
||||
\item Let $K = T(2, 3)$. $\sigma(K) = -2$, therefore $T(2, 3)$ isn't a slice knot.
|
||||
\item Let $K$ be a trefoil and $K^\prime$ a mirror of a trefoil. $g_4(K^\prime) = 1$, but $g_(K \# K^\prime) = 0$.
|
||||
\\?????????????????????\\
|
||||
\item
|
||||
?????????????\\
|
||||
The equality:
|
||||
\[
|
||||
g_4(T(p, q) ) = \frac{1}{2} (p - 1) (g -1)
|
||||
\]
|
||||
was conjecture in the '70 and proved by P. Kronheimer and T. Mrówka.
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
\begin{proposition}
|
||||
$g_4 (T(p, q) \# -T(r, s))$ is in general hopelessly unknown.
|
||||
\\???????????????\\
|
||||
essentially $\sup \vert \sigma_K(t) \vert \leq 2 g_n(K)$
|
||||
\end{proposition}
|
||||
\begin{definition}
|
||||
A knot $K$ is called topologically slice if $K$ bounds a topological locally flat disc in $B^4$ (it has tubular neighbourhood).
|
||||
\end{definition}
|
||||
\begin{theorem}[Freedman, '82]
|
||||
If $\Delta_K(t) \geq 1$, then $K$ is topologically slice, but not necessarily smoothly slice.
|
||||
\end{theorem}
|
||||
\begin{theorem}[Powell, 2015]
|
||||
If $K$ is genus g
|
||||
\\(top. loc.?????????)\\
|
||||
cobordant to $K^\prime$,
|
||||
then $\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g$. \\
|
||||
If $g_4^{\mytop}(K) \geq $ ?????ess $\sup \vert \sigma_K(t) \vert$ and ?????????\\
|
||||
$\dim \ker (H_1 (Y) \longrightarrow H_1(\Omega)) = \frac{1}{2} \dim H_1(Y)$.
|
||||
\end{theorem}
|
||||
???????????????
|
||||
\[
|
||||
H^1 (B^4 \setminus Y, \mathbb{Z}) = [B^4 \setminus Y, S^1]
|
||||
\]
|
||||
\noindent
|
||||
Remark: unless $p=2$ or $p = 3 \wedge q = 4$:
|
||||
\[
|
||||
g_4^\top (T(p, q)) < q_4(T(p, q))
|
||||
\]
|
||||
%??????????????????????
|
||||
\begin{definition}
|
||||
The Witt group $W$ of $\mathbb{Z}[t, t^{-1}]$ elements are classes of non-degenerate
|
||||
forms over $\mathbb{Z}[t, t^{-1}]$ under the equivalence relation $V \sim W$ if $V \oplus - W$ is metabolic.
|
||||
\end{definition}
|
||||
\noindent
|
||||
If $S$ differs from $S^\prime$ by a row extension, then
|
||||
$(1 - t) S + (1 - \bar{t}^{-1}) S^T$ is Witt equivalence to $(1 - t) S^\prime + (1 - t^{-1})S^T$.
|
||||
%???????????????????????????
|
||||
\noindent
|
||||
A form is meant as hermitian with respect to this involution: $A^T = A: (a, b) = \bar{(a, b)}$.
|
@ -85,6 +85,8 @@
|
||||
\DeclareMathOperator{\Hom}{Hom}
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\DeclareMathOperator{\ord}{ord}
|
||||
\DeclareMathOperator{\mytop}{top}
|
||||
|
||||
\DeclareMathOperator{\Gl}{GL}
|
||||
\DeclareMathOperator{\Sl}{SL}
|
||||
\DeclareMathOperator{\Lk}{lk}
|
||||
@ -148,28 +150,84 @@ H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
|
||||
\\
|
||||
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
||||
\begin{proposition}
|
||||
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes $[A], [B] \in H_2(X, \mathbb{Z})$. \\
|
||||
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes:
|
||||
\[
|
||||
[A], [B] \in H_2(X, \mathbb{Z}).
|
||||
\]
|
||||
\end{proposition}
|
||||
\noindent
|
||||
\\
|
||||
|
||||
If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation if $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle.
|
||||
\begin{example}
|
||||
If $\omega$ is an $m$ - form then:
|
||||
\[
|
||||
= [\omega]
|
||||
\int_M \omega = [\omega]([M]), \quad [\omega] \in H^m_\Omega(M), \ [M] \in H_m(M).
|
||||
\]
|
||||
|
||||
\end{example}
|
||||
????????????????????????????????????????????????
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.8\textwidth}{!}{\input{images/torus_alpha_beta.pdf_tex}}
|
||||
}
|
||||
\caption{$\beta$ cross $3$ times the disk bounded by $\alpha$.
|
||||
$T_X \alpha + T_X \beta = T_Z \Sigma$
|
||||
}\label{fig:torus_alpha_beta}
|
||||
\end{figure}
|
||||
|
||||
\begin{theorem}
|
||||
Any non-degenerate form
|
||||
\[
|
||||
A : \mathbb{Z}^n \times \mathbb{Z}^n \longrightarrow \mathbb{Z}
|
||||
\]
|
||||
can be realized as an intersection form of a simple connected $4$-dimensional manifold.
|
||||
\end{theorem}
|
||||
??????????????????????????
|
||||
\begin{theorem}[Donaldson, 1982]
|
||||
If $A$ is an even defined intersection form of a smooth $4$-manifold then it is diagonalizable over $\mathbb{Z}$.
|
||||
\end{theorem}
|
||||
??????????????????????????
|
||||
??????????????????????????
|
||||
??????????????????????????
|
||||
??????????????????????????
|
||||
\begin{definition}
|
||||
even define
|
||||
\end{definition}
|
||||
Suppose $X$ us $4$ -manifold with a boundary such that $H_1(X) = 0$.
|
||||
|
||||
%$A \cdot B$ gives the pairing as ??
|
||||
\end{proposition}
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-04-15}}
|
||||
In other words:\\
|
||||
\begin{theorem}
|
||||
Suppose that $K \subset S^3$ is a slice knot (i.e. $K$ bound a disk in $B^4$).
|
||||
Then if $F$ is a Seifert surface of $K$ and $V$ denotes the associated Seifet matrix, then there exists $P \in \Gl_g(\mathbb{Z})$ such that:
|
||||
\\??????????????? T ????????
|
||||
\begin{align}
|
||||
PVP^{-1} =
|
||||
\begin{pmatrix}
|
||||
0 & A\\
|
||||
B & C
|
||||
\end{pmatrix}, \quad A, C, C \in M_{g \times g} (\mathbb{Z})
|
||||
\end{align}
|
||||
\end{theorem}
|
||||
In other words you can find rank $g$ direct summand $\mathcal{Z}$ of $H_1(F)$ \\
|
||||
????????????\\
|
||||
such that for any
|
||||
$\alpha, \beta \in \mathcal{L}$ the linking number $\Lk (\alpha, \beta^+) = 0$.
|
||||
\begin{definition}
|
||||
An abstract Seifert matrix (i. e.
|
||||
\end{definition}
|
||||
Choose a basis $(b_1, ..., b_i)$ \\
|
||||
???\\
|
||||
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
|
||||
\begin{align*}
|
||||
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
|
||||
\end{align*}
|
||||
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z})$.\\
|
||||
In particular $\vert \det A\vert = \# H_1(Y, \mathbb{Z})$.\\
|
||||
That means - what is happening on boundary is a measure of degeneracy.
|
||||
|
||||
\begin{center}
|
||||
@ -426,7 +484,7 @@ Therefore:
|
||||
&P^{\prime} = g^{\prime}\overbar{g}
|
||||
\end{align*}
|
||||
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
|
||||
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore:
|
||||
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore:
|
||||
\begin{align*}
|
||||
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
|
||||
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
|
||||
|