sum of concordant knots
This commit is contained in:
parent
129b2608be
commit
11a97cecc9
BIN
images/concordance_sum.pdf
Normal file
BIN
images/concordance_sum.pdf
Normal file
Binary file not shown.
68
images/concordance_sum.pdf_tex
Normal file
68
images/concordance_sum.pdf_tex
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'concordance_sum.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{2270.54270346bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.35664263)%
|
||||||
|
\put(0.34523208,0.32026902){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.13180612\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.37403638,0.28673265){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.05553241\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(-0.24570519,0.33337987){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07663471\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{concordance_sum.pdf}}%
|
||||||
|
\put(0.00755836,0.35865552){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03301039\unitlength}\raggedright $K_1$\end{minipage}}}%
|
||||||
|
\put(0.31573503,0.30921292){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11352441\unitlength}\raggedright $K_1\prime$\end{minipage}}}%
|
||||||
|
\put(0.11757955,0.35187197){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15898166\unitlength}\raggedright \shortstack{Annulus $A_1$}\end{minipage}}}%
|
||||||
|
\put(0.1209483,0.44515339){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11151923\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{concordance_sum.pdf}}%
|
||||||
|
\put(0.00912905,0.16388952){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03301039\unitlength}\raggedright $K_2$\end{minipage}}}%
|
||||||
|
\put(0.30238413,0.11444693){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11352441\unitlength}\raggedright $K_2\prime$\end{minipage}}}%
|
||||||
|
\put(0.11915025,0.15710597){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.16683513\unitlength}\raggedright \shortstack{Annulus $A_2$}\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{concordance_sum.pdf}}%
|
||||||
|
\put(0.79479654,0.15057288){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21876087\unitlength}\raggedright $K_1\prime \# K_2\prime$\end{minipage}}}%
|
||||||
|
\put(0.39316361,0.18038181){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07306307\unitlength}\raggedright $K_1 \# K_2$\end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
469
images/concordance_sum.svg
Normal file
469
images/concordance_sum.svg
Normal file
@ -0,0 +1,469 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800.99701mm"
|
||||||
|
height="285.66968mm"
|
||||||
|
viewBox="0 0 800.99698 285.66968"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||||
|
sodipodi:docname="concordance_sum.svg">
|
||||||
|
<defs
|
||||||
|
id="defs2">
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
id="linearGradient1385">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#0e0e0d;stop-opacity:1"
|
||||||
|
offset="0"
|
||||||
|
id="stop1381" />
|
||||||
|
<stop
|
||||||
|
style="stop-color:#000300;stop-opacity:0.38725489"
|
||||||
|
offset="1"
|
||||||
|
id="stop1383" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient2971"
|
||||||
|
inkscape:collect="always">
|
||||||
|
<stop
|
||||||
|
id="stop2967"
|
||||||
|
offset="0"
|
||||||
|
style="stop-color:#aaa8a6;stop-opacity:0.72156864" />
|
||||||
|
<stop
|
||||||
|
id="stop2969"
|
||||||
|
offset="1"
|
||||||
|
style="stop-color:#000300;stop-opacity:1" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
id="fill_blue"
|
||||||
|
inkscape:collect="always">
|
||||||
|
<stop
|
||||||
|
id="stop2951"
|
||||||
|
offset="0"
|
||||||
|
style="stop-color:#aaa8a6;stop-opacity:0.0959596" />
|
||||||
|
<stop
|
||||||
|
id="stop2953"
|
||||||
|
offset="1"
|
||||||
|
style="stop-color:#aaa8a6;stop-opacity:0.97474748" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient2577"
|
||||||
|
osb:paint="solid">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#d40000;stop-opacity:1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop2575" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
id="stroke_black">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#aaa8a6;stop-opacity:0.72156864"
|
||||||
|
offset="0"
|
||||||
|
id="stop1085" />
|
||||||
|
<stop
|
||||||
|
style="stop-color:#000300;stop-opacity:0;"
|
||||||
|
offset="1"
|
||||||
|
id="stop1087" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient2971"
|
||||||
|
id="linearGradient2936"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
x1="-328.08578"
|
||||||
|
y1="148.3499"
|
||||||
|
x2="33.826054"
|
||||||
|
y2="179.25885"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,39.679986,-48.104512)" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#fill_blue"
|
||||||
|
id="linearGradient2949"
|
||||||
|
x1="-382.91879"
|
||||||
|
y1="122.5275"
|
||||||
|
x2="43.369972"
|
||||||
|
y2="163.14836"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,39.679986,-48.104512)" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#stroke_black"
|
||||||
|
id="linearGradient2979"
|
||||||
|
x1="-257.35953"
|
||||||
|
y1="145.78622"
|
||||||
|
x2="31.243963"
|
||||||
|
y2="139.37778"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,39.679986,-48.104512)" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#fill_blue"
|
||||||
|
id="linearGradient503"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,40.938107,107.90246)"
|
||||||
|
x1="-382.91879"
|
||||||
|
y1="122.5275"
|
||||||
|
x2="43.369972"
|
||||||
|
y2="163.14836" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient2971"
|
||||||
|
id="linearGradient505"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,40.938107,107.90246)"
|
||||||
|
x1="-328.08578"
|
||||||
|
y1="148.3499"
|
||||||
|
x2="33.826054"
|
||||||
|
y2="179.25885" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#stroke_black"
|
||||||
|
id="linearGradient507"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,40.938107,107.90246)"
|
||||||
|
x1="-257.35953"
|
||||||
|
y1="145.78622"
|
||||||
|
x2="31.243963"
|
||||||
|
y2="139.37778" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#fill_blue"
|
||||||
|
id="linearGradient538"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,427.18119,-5.328406)"
|
||||||
|
x1="-382.91879"
|
||||||
|
y1="122.5275"
|
||||||
|
x2="43.369972"
|
||||||
|
y2="163.14836" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient2971"
|
||||||
|
id="linearGradient540"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.80329032,0,0,1.2185635,427.18119,-5.328406)"
|
||||||
|
x1="-328.08578"
|
||||||
|
y1="148.3499"
|
||||||
|
x2="33.826054"
|
||||||
|
y2="179.25885" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#fill_blue"
|
||||||
|
id="linearGradient554"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.64586719,0.15782226,0.28925415,-1.1837352,350.1857,517.11302)"
|
||||||
|
x1="-382.91879"
|
||||||
|
y1="122.5275"
|
||||||
|
x2="43.369972"
|
||||||
|
y2="163.14836" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient2971"
|
||||||
|
id="linearGradient556"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.64586719,0.15782226,0.28925415,-1.1837352,350.1857,517.11302)"
|
||||||
|
x1="-328.08578"
|
||||||
|
y1="148.3499"
|
||||||
|
x2="33.826054"
|
||||||
|
y2="179.25885" />
|
||||||
|
<radialGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient1385"
|
||||||
|
id="radialGradient1373"
|
||||||
|
cx="-212.55186"
|
||||||
|
cy="347.21616"
|
||||||
|
fx="-212.55186"
|
||||||
|
fy="347.21616"
|
||||||
|
r="41.662697"
|
||||||
|
gradientTransform="matrix(0.27469349,-1.7655014,-3.3945763,-0.52816046,1439.4435,46.130242)"
|
||||||
|
gradientUnits="userSpaceOnUse" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#stroke_black"
|
||||||
|
id="linearGradient2166"
|
||||||
|
x1="2418.8113"
|
||||||
|
y1="697.12329"
|
||||||
|
x2="1278.978"
|
||||||
|
y2="572.88092"
|
||||||
|
gradientUnits="userSpaceOnUse" />
|
||||||
|
</defs>
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="0.42060085"
|
||||||
|
inkscape:cx="1975.1639"
|
||||||
|
inkscape:cy="694.78526"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
inkscape:window-width="1397"
|
||||||
|
inkscape:window-height="855"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="1"
|
||||||
|
inkscape:window-maximized="1"
|
||||||
|
fit-margin-top="0"
|
||||||
|
fit-margin-left="0"
|
||||||
|
fit-margin-right="0"
|
||||||
|
fit-margin-bottom="0" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(175.00922,-84.030005)">
|
||||||
|
<flowRoot
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99984741px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot3076"
|
||||||
|
xml:space="preserve"
|
||||||
|
transform="matrix(0.84863305,0,0,0.77924634,289.84598,-19.911808)"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99984741px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion3072"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99984741px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="170.7765"
|
||||||
|
x="-221.91609"
|
||||||
|
height="70.609642"
|
||||||
|
width="124.40749"
|
||||||
|
id="rect3070" /></flowRegion><flowPara
|
||||||
|
id="flowPara3078" /></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot3080"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-297.08978,76.160927)"><flowRegion
|
||||||
|
id="flowRegion3082"><rect
|
||||||
|
id="rect3084"
|
||||||
|
width="168.11826"
|
||||||
|
height="47.073109"
|
||||||
|
x="1593.761"
|
||||||
|
y="241.38617" /></flowRegion><flowPara
|
||||||
|
id="flowPara3086" /></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot3088"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-297.08978,76.160927)"><flowRegion
|
||||||
|
id="flowRegion3090"><rect
|
||||||
|
id="rect3092"
|
||||||
|
width="232.00319"
|
||||||
|
height="262.26447"
|
||||||
|
x="-282.43866"
|
||||||
|
y="100.16685" /></flowRegion><flowPara
|
||||||
|
id="flowPara3094" /></flowRoot> <g
|
||||||
|
id="g528"
|
||||||
|
transform="translate(18.871812,22.646174)">
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="ccsscccscccc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path2792"
|
||||||
|
d="m 20.857854,196.75293 c 16.112492,0.28845 33.001684,2.61634 48.394685,-6.01574 5.354976,-10.33206 0.625114,-33.88546 17.772112,-34.61474 10.574714,-0.44974 -5.868039,-26.3269 -11.917815,-32.00855 -1.709108,-1.60512 -3.718982,-2.57009 -6.063468,-2.64086 -1.682074,-0.11235 -3.363769,-0.2035 -5.045056,-0.27425 -109.826222,-11.4827 -198.744912,32.02305 -211.533672,3.2309 -2.19166,-5.03649 -7.60203,-14.80346 -13.58057,-22.63721 -5.54844,-7.270186 -11.58623,-12.875297 -15.99471,-11.488809 -8.35396,2.976281 4.18485,33.758089 -5.99707,50.295419 -0.41462,7.26003 2.36811,14.65906 7.47859,15.45659 86.647889,34.84728 114.285627,32.47071 196.486974,40.69725 z"
|
||||||
|
style="opacity:1;fill:url(#linearGradient2949);fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient2936);stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.54299999" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path2790"
|
||||||
|
d="m -160.21542,103.6512 c 11.01964,5.05362 -8.37695,35.29816 -15.4137,52.40448"
|
||||||
|
style="opacity:0.27000002;fill:none;fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient2979);stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.92929293" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path971"
|
||||||
|
d="M 69.252539,190.73719 C 33.142775,171.79743 48.206448,120.8675 69.63357,120.55848"
|
||||||
|
style="opacity:0.63899997;fill:none;fill-opacity:0.60784314;fill-rule:nonzero;stroke:#3d4847;stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.80392157" />
|
||||||
|
</g>
|
||||||
|
<flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot3060"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.21253723,0,0,0.32241159,-121.78956,27.357363)"><flowRegion
|
||||||
|
id="flowRegion3062"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||||
|
id="rect3064"
|
||||||
|
width="124.40749"
|
||||||
|
height="70.609642"
|
||||||
|
x="-221.91609"
|
||||||
|
y="170.7765"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||||
|
id="flowPara461">$K_1$</flowPara></flowRoot> <flowRoot
|
||||||
|
transform="matrix(0.31386356,0,0,0.32241159,148.2596,77.801394)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot3110"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion3106"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="137.15285"
|
||||||
|
x="-224.19296"
|
||||||
|
height="54.584145"
|
||||||
|
width="289.72052"
|
||||||
|
id="rect3104" /></flowRegion><flowPara
|
||||||
|
id="flowPara463">$K_1\prime$</flowPara></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot3140"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.21253723,0,0,0.32241159,-93.334332,117.8901)"><flowRegion
|
||||||
|
id="flowRegion3136"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||||
|
id="rect3134"
|
||||||
|
width="599.16016"
|
||||||
|
height="51.846722"
|
||||||
|
x="58.841389"
|
||||||
|
y="-93.169144"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||||
|
id="flowPara2012">\shortstack{Annulus $A_1$}</flowPara></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot465"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-285.09085,21.695728)"><flowRegion
|
||||||
|
id="flowRegion467"><rect
|
||||||
|
id="rect469"
|
||||||
|
width="337.61224"
|
||||||
|
height="175.93878"
|
||||||
|
x="782.21429"
|
||||||
|
y="-32.362514" /></flowRegion><flowPara
|
||||||
|
id="flowPara471"></flowPara></flowRoot> <g
|
||||||
|
id="g518"
|
||||||
|
transform="matrix(0.80402711,0.19646976,-0.23737306,0.97141857,74.094508,36.624695)">
|
||||||
|
<g
|
||||||
|
id="g523"
|
||||||
|
transform="matrix(1,0,0,-1,0,604.60924)">
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="ccssccccc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path473"
|
||||||
|
d="m 22.115975,352.75991 c 16.112492,0.28845 33.001684,2.61634 48.394685,-6.01574 34.09202,-15.36104 61.51113,-52.56907 17.772112,-34.61474 -18.232145,7.48407 -27.40404,-12.24567 -11.917815,-32.00855 1.446173,-1.84555 -3.718982,-2.57009 -6.063468,-2.64086 -1.682074,-0.11235 -3.363769,-0.2035 -5.045056,-0.27425 -100.116497,58.70185 -165.705253,52.82507 -225.114243,-19.40631 -43.62409,-27.38286 -82.90663,27.70978 -7.59353,41.68199 86.647894,34.84728 107.365968,45.05192 189.567315,53.27846 z"
|
||||||
|
style="opacity:1;fill:url(#linearGradient503);fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient505);stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.54299999" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path475"
|
||||||
|
d="m -158.9573,259.65818 c 13.6277,6.07869 16.02479,29.58809 -8.49404,39.82327"
|
||||||
|
style="opacity:0.27000002;fill:none;fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient507);stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.92929293" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path477"
|
||||||
|
d="M 70.51066,346.74417 C 24.243338,358.27708 49.464569,276.87448 70.891691,276.56546"
|
||||||
|
style="opacity:0.63899997;fill:none;fill-opacity:0.60784314;fill-rule:nonzero;stroke:#3d4847;stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.80392157" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<flowRoot
|
||||||
|
transform="matrix(0.21253723,0,0,0.32241159,-120.53144,183.36434)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot485"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion481"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="170.7765"
|
||||||
|
x="-221.91609"
|
||||||
|
height="70.609642"
|
||||||
|
width="124.40749"
|
||||||
|
id="rect479" /></flowRegion><flowPara
|
||||||
|
id="flowPara511">$K_2$</flowPara></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot493"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.31386356,0,0,0.32241159,137.56557,233.80837)"><flowRegion
|
||||||
|
id="flowRegion489"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||||
|
id="rect487"
|
||||||
|
width="289.72052"
|
||||||
|
height="54.584145"
|
||||||
|
x="-224.19296"
|
||||||
|
y="137.15285"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||||
|
id="flowPara513">$K_2\prime$</flowPara></flowRoot> <flowRoot
|
||||||
|
transform="matrix(0.21253723,0,0,0.32241159,-92.076211,273.89708)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot501"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion497"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="-93.169144"
|
||||||
|
x="58.841389"
|
||||||
|
height="57.70005"
|
||||||
|
width="628.75781"
|
||||||
|
id="rect495" /></flowRegion><flowPara
|
||||||
|
id="flowPara2014">\shortstack{Annulus $A_2$}</flowPara></flowRoot> <path
|
||||||
|
sodipodi:nodetypes="cccsscccscc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path530"
|
||||||
|
d="m 211.87208,198.83179 c 86.64789,34.84728 114.28563,32.47071 196.48697,40.69725 16.1125,0.28845 33.00169,2.61634 48.39469,-6.01574 5.35497,-10.33206 0.62511,-33.88546 17.77211,-34.61474 10.57471,-0.44974 -5.86804,-26.3269 -11.91781,-32.00855 -1.70911,-1.60512 -3.71899,-2.57009 -6.06347,-2.64086 -1.68208,-0.11235 -3.36377,-0.2035 -5.04506,-0.27425 -109.82622,-11.4827 -198.74491,32.02305 -211.53367,3.2309 -2.19166,-5.03649 -7.60203,-14.80346 -13.58057,-22.63721 -5.54844,-7.27019 -11.58623,-12.8753 -15.99471,-11.48881 -8.35396,2.97628 4.18485,33.75809 -5.99707,50.29542"
|
||||||
|
style="opacity:1;fill:url(#linearGradient538);fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient540);stroke-width:0.98937368;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.54299999" />
|
||||||
|
<path
|
||||||
|
style="opacity:1;fill:url(#linearGradient554);fill-opacity:1;fill-rule:nonzero;stroke:url(#linearGradient556);stroke-width:0.90010363;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.54299999"
|
||||||
|
d="m 393.17476,275.55596 c 13.02335,2.88541 27.1553,3.94227 37.48267,15.3519 23.76461,21.62005 36.97813,63.15164 6.07265,37.11708 -12.88262,-10.85223 -24.94038,6.51161 -17.18021,28.75221 0.72467,2.07693 -3.60024,1.76597 -5.50207,1.37409 -1.3791,-0.22134 1.36859,0.26165 0,0 -66.56214,-76.69393 -124.81372,-84.59611 -189.72595,-26.10128 -41.5749,18.02941 -60.08162,-43.20644 3.78878,-41.98256 77.93906,-16.8276 97.01926,-22.6701 165.06413,-14.51144 z"
|
||||||
|
id="path544"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="ccssccccc" />
|
||||||
|
<path
|
||||||
|
style="opacity:0.27000002;fill:#a8a8a5;fill-opacity:0.99509804;fill-rule:nonzero;stroke:url(#radialGradient1373);stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.99509804"
|
||||||
|
d="m 211.87207,198.83178 c 7.03676,-17.10631 24.51656,-43.9322 16.30333,-52.84929 -7.5286,-8.17378 -13.78975,-16.69024 -18.77855,-10.86972 -6.54275,7.63353 6.25009,23.4621 -5.00336,48.26243 m 3.70057,108.91626 c 0,0 13.01816,-27.03766 9.69269,-39.49173 -3.09131,-11.57719 -8.38451,-22.84698 -8.95008,-34.81642 -0.30507,-6.45633 3.03538,-19.15153 3.03538,-19.15153 2.48565,5.52494 -7.72125,-14.03685 -7.47859,-15.45659 -6.00768,13.23972 -8.97804,38.4552 -12.5781,52.8606 -4.57444,18.30431 25.54299,27.58377 7.39228,47.26151 -8.11603,8.79884 -16.38278,31.06286 -12.46135,38.12236 6.1835,11.13179 18.98218,16.86586 38.74078,8.80162 12.5088,-5.1053 23.66362,-32.12994 -17.39301,-38.12982"
|
||||||
|
id="path546"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="cssccssccssssc" />
|
||||||
|
<path
|
||||||
|
style="opacity:0.63899997;fill:#aba8a6;fill-opacity:0.97254902;fill-rule:nonzero;stroke:#353935;stroke-width:0.90010363;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.22745098"
|
||||||
|
d="m 417.13602,359.15562 c -17.15463,-4.50997 -20.94117,-88.54118 13.52141,-68.24776 24.2438,-13.15266 22.48985,-36.30445 26.0963,-57.39456 -36.10976,-18.93976 -21.04609,-69.86969 0.38104,-70.17871 45.83338,23.23398 22.38482,145.83735 -3.27089,173.55078 -10.68735,-2.89917 -19.68938,-12.11317 -24.93139,-12.45687 -8.78889,-0.57624 -9.2022,8.37336 -11.37662,15.42643 -2.9071,9.42957 5.00296,20.55657 -0.41985,19.30069 z"
|
||||||
|
id="path548"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="cccccssc" />
|
||||||
|
<path
|
||||||
|
style="opacity:1;fill:url(#linearGradient2166);fill-opacity:1;fill-rule:evenodd;stroke:#161816;stroke-width:6.35338593;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:6.35338591, 6.35338591000000008;stroke-dashoffset:0;stroke-opacity:0.22745098"
|
||||||
|
d="m 1453.0989,781.62154 c 23.9669,-54.57782 38.445,-108.40328 35.6635,-132.58713 -1.1441,-9.94765 -4.8323,-23.06494 -17.9461,-63.8267 -16.4474,-51.12333 -19.933,-73.99422 -15.6996,-103.01394 4.1083,-28.16176 8.1925,-44.25677 11.0681,-43.61663 1.3123,0.29212 18.6514,6.83943 38.5313,14.54959 110.9922,43.04668 202.8458,71.3823 288.3228,88.94382 71.3973,14.66878 123.1734,21.45359 258.0615,33.8167 45.7702,4.19504 99.1057,9.22247 118.5234,11.17206 27.2871,2.73971 47.9041,3.59349 90.7839,3.75951 52.243,0.20227 56.5061,-0.0121 73.0884,-3.67659 9.6852,-2.14026 24.4166,-6.44826 32.7365,-9.57332 8.3198,-3.12506 15.2948,-5.51405 15.5,-5.30887 36.6217,17.13624 -45.5962,224.32746 -92.7404,204.25959 -0.4269,0.42695 -4.007,-2.19741 -7.9557,-5.83193 -23.2172,-21.36999 -48.0548,-31.59229 -105.5203,-43.42833 -68.9089,-14.19302 -199.845,-22.63956 -276.5628,-17.84076 -75.0604,4.69512 -138.2415,15.45084 -307.6258,52.36902 -58.1555,12.67527 -71.2619,15.0182 -84.0592,15.02657 -13.7349,0.008 -43.9787,3.55187 -51.9812,6.08931 -2.2933,0.72718 -2.9116,0.36499 -2.1883,-1.28197 z"
|
||||||
|
id="path1409"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-175.00922,84.030005)"
|
||||||
|
sodipodi:nodetypes="ccccccsssscccccsssccc" />
|
||||||
|
<flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot2022"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.31386356,0,0,0.32241159,531.98644,204.87159)"><flowRegion
|
||||||
|
id="flowRegion2018"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||||
|
id="rect2016"
|
||||||
|
width="558.28973"
|
||||||
|
height="60.437481"
|
||||||
|
x="-224.19296"
|
||||||
|
y="137.15285"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99995804px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||||
|
id="flowPara2034">$K_1\prime \# K_2\prime$</flowPara></flowRoot> <flowRoot
|
||||||
|
transform="matrix(0.21253723,0,0,0.32241159,187.07909,170.15407)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot2030"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion2026"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:39.99971771px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="170.7765"
|
||||||
|
x="-221.91609"
|
||||||
|
height="60.854084"
|
||||||
|
width="275.35553"
|
||||||
|
id="rect2024" /></flowRegion><flowPara
|
||||||
|
id="flowPara2032">$K_1 \# K_2$</flowPara></flowRoot> </g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 33 KiB |
@ -225,7 +225,7 @@ We smooth all the crossings, so we get a disjoint union of circles on the plane.
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
Note: in general the obtained surface doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -295,6 +295,13 @@ $T(6, 2)$ link:
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
\begin{fact}
|
||||||
|
\[
|
||||||
|
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
||||||
|
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
||||||
|
\]
|
||||||
|
where $b_1$ is first Betti number of $\Sigma$.
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
\subsection{Seifert matrix}
|
\subsection{Seifert matrix}
|
||||||
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
||||||
@ -583,7 +590,9 @@ An oriented knot is called negative amphichiral if the mirror image $m(K)$ if $K
|
|||||||
Prove that if $K$ is negative amphichiral, then $K \# K$ in
|
Prove that if $K$ is negative amphichiral, then $K \# K$ in
|
||||||
$\mathbf{C}$
|
$\mathbf{C}$
|
||||||
\end{example}
|
\end{example}
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
\section{\hfill\DTMdate{2019-03-18}}
|
\section{\hfill\DTMdate{2019-03-18}}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||||
@ -612,9 +621,19 @@ For any $K$, $K \# m(K)$ is slice.
|
|||||||
\begin{fact}
|
\begin{fact}
|
||||||
Concordance is an equivalence relation.
|
Concordance is an equivalence relation.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{fact}
|
\begin{fact}\label{fakt:concordance_connected}
|
||||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
||||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{10}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
|
||||||
|
}
|
||||||
|
\caption{Sketch for Fakt \ref{fakt:concordance_connected}.}
|
||||||
|
\label{fig:concordance_sum}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
$K \# m(K) \sim $ the unknot.
|
$K \# m(K) \sim $ the unknot.
|
||||||
@ -649,6 +668,13 @@ $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
|
|||||||
|
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
|
||||||
|
|
||||||
|
\section{\hfill\DTMdate{2019-03-11}}
|
||||||
|
\begin{definition}
|
||||||
|
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-04-15}}
|
\section{\hfill\DTMdate{2019-04-15}}
|
||||||
In other words:\\
|
In other words:\\
|
||||||
Choose a basis $(b_1, ..., b_i)$ \\
|
Choose a basis $(b_1, ..., b_i)$ \\
|
||||||
|
Loading…
Reference in New Issue
Block a user