All corrections for first lecture acording MB tips done
This commit is contained in:
parent
60d7f7d850
commit
29147fdaf7
@ -183,9 +183,9 @@ $S = \begin{pmatrix}
|
|||||||
\Rightarrow \text{trefoil is not trivial.}
|
\Rightarrow \text{trefoil is not trivial.}
|
||||||
\]
|
\]
|
||||||
\end{example}
|
\end{example}
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
$\Delta_K(t)$ is symmetric.
|
$\Delta_K(t)$ is symmetric.
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $S$ be an $n \times n$ matrix.
|
Let $S$ be an $n \times n$ matrix.
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
@ -152,21 +152,21 @@ A knot (link) is called alternating if it admits an alternating diagram.
|
|||||||
\begin{definition}
|
\begin{definition}
|
||||||
A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced.
|
A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
Any reduced alternating diagram has minimal number of crossings.
|
Any reduced alternating diagram has minimal number of crossings.
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
The writhe of the diagram is the difference between the number of positive and negative crossings.
|
The writhe of the diagram is the difference between the number of positive and negative crossings.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{fact}[Tait]
|
\begin{lemma}[Tait]
|
||||||
Any two diagrams of the same alternating knot have the same writhe.
|
Any two diagrams of the same alternating knot have the same writhe.
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
An alternating knot has Alexander polynomial of the form:
|
An alternating knot has Alexander polynomial of the form:
|
||||||
$
|
$
|
||||||
a_1t^{n_1} + a_2t^{n_2} + \dots + a_s t^{n_s}
|
a_1t^{n_1} + a_2t^{n_2} + \dots + a_s t^{n_s}
|
||||||
$, where $n_1 < n_2 < \dots < n_s$ and $a_ia_{i+1} < 0$.
|
$, where $n_1 < n_2 < \dots < n_s$ and $a_ia_{i+1} < 0$.
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\begin{problem}[open]
|
\begin{problem}[open]
|
||||||
What is the minimal $\alpha \in \mathbb{R}$ such that if $z$ is a root of the Alexander polynomial of an alternating knot, then $\Re(z) > \alpha$.\\
|
What is the minimal $\alpha \in \mathbb{R}$ such that if $z$ is a root of the Alexander polynomial of an alternating knot, then $\Re(z) > \alpha$.\\
|
||||||
Remark: alternating knots have very simple knot homologies.
|
Remark: alternating knots have very simple knot homologies.
|
||||||
|
@ -49,20 +49,20 @@ H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
|||||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
|
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
|
||||||
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
|
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
|
||||||
&\text{where $V$ is a Seifert matrix.}
|
&\text{where $V$ is a Seifert matrix.}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
||||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
|
||||||
(\alpha, \beta) \quad &\mapsto \alpha^{-1}{(t -1)(tV - V^T)}^{-1}\beta
|
(\alpha, \beta) \quad &\mapsto \alpha^{-1}{(t -1)(tV - V^T)}^{-1}\beta
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
\noindent
|
\noindent
|
||||||
Note that $\mathbb{Z}[t, t^{-1}]$ is not PID.
|
Note that $\mathbb{Z}[t, t^{-1}]$ is not PID.
|
||||||
Therefore we don't have primary decomposition of this module.
|
Therefore we don't have primary decomposition of this module.
|
||||||
|
101
lec_25_02.tex
101
lec_25_02.tex
@ -17,12 +17,12 @@ are shown respectively in
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.45\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]
|
\includegraphics[width=0.5\textwidth]
|
||||||
{unknot.png}
|
{unknot.png}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.45\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]
|
\includegraphics[width=0.5\textwidth]
|
||||||
{trefoil.png}
|
{trefoil.png}
|
||||||
@ -34,22 +34,24 @@ are shown respectively in
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.45\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]
|
\includegraphics[width=0.5\textwidth]
|
||||||
{not_injective_knot.png}
|
{not_injective_knot.png}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.45\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]
|
\includegraphics[width=0.5\textwidth]
|
||||||
{not_smooth_knot.png}
|
{not_smooth_knot.png}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{Not-knots examples:
|
\caption{
|
||||||
|
Not-knots examples:
|
||||||
an image of
|
an image of
|
||||||
a function ${S^1\longrightarrow S^3}$
|
a function ${S^1\longrightarrow S^3}$
|
||||||
that isn't injective (left) and
|
that is not injective (left) and
|
||||||
of a function
|
of a function
|
||||||
that isn't smooth (right).}
|
that is not smooth (right).
|
||||||
|
}
|
||||||
\label{fig:notknot}
|
\label{fig:notknot}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -101,23 +103,40 @@ are shown respectively in
|
|||||||
in $S^3$.
|
in $S^3$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{example}
|
\noindent
|
||||||
Links:
|
Example of simple links are shown in
|
||||||
\begin{itemize}
|
\autoref{fig:links}.
|
||||||
\item
|
|
||||||
a trivial link with $3$ components:
|
\begin{figure}[h]
|
||||||
\includegraphics[width=0.2\textwidth]{3unknots.png},
|
\centering
|
||||||
\item
|
\begin{subfigure}{0.5\textwidth}
|
||||||
a Hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
|
\centering
|
||||||
\item
|
\includegraphics[width=1\textwidth]
|
||||||
a Whitehead link:
|
{3unknots.png}
|
||||||
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
\caption{A trivial link with $3$ components.}
|
||||||
\item
|
\end{subfigure}
|
||||||
a Borromean link:
|
\begin{subfigure}{0.4\textwidth}
|
||||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
|
\centering
|
||||||
\end{itemize}
|
\includegraphics[width=0.7\textwidth]
|
||||||
\end{example}
|
{Hopf.png}
|
||||||
%
|
\caption{A Hopf link.}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]
|
||||||
|
{WhiteheadLink.png},
|
||||||
|
\caption{A Whitehead link.}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\textwidth]
|
||||||
|
{BorromeanRings.png}
|
||||||
|
\caption{A Borromean link.}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{Link examples.}
|
||||||
|
\label{fig:links}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
\begin{definition}\label{def:link_diagram}
|
\begin{definition}\label{def:link_diagram}
|
||||||
@ -133,12 +152,24 @@ a Borromean link:
|
|||||||
\item there are no triple point.
|
\item there are no triple point.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
By \Cref{def:link_diagram} the following pictures can not be a part of a diagram:
|
By \Cref{def:link_diagram} the following pictures can not be a part of a diagram:
|
||||||
\includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
\begin{figure}[H]
|
||||||
\includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
|
\centering
|
||||||
\includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
\begin{subfigure}{0.1\textwidth}
|
||||||
|
\includegraphics[width=0.8\textwidth]
|
||||||
|
{LinkDiagram1.png},
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.1\textwidth}
|
||||||
|
\includegraphics[width=0.6\textwidth]
|
||||||
|
{LinkDiagram2.png},
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.1\textwidth}
|
||||||
|
\includegraphics[width=0.8\textwidth]
|
||||||
|
{LinkDiagram3.png}.
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.
|
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.
|
||||||
@ -152,7 +183,9 @@ We can distinguish two types of crossings: right-handed
|
|||||||
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
||||||
|
|
||||||
\subsection{Reidemeister moves}
|
\subsection{Reidemeister moves}
|
||||||
|
|
||||||
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
||||||
|
|
||||||
\begin{enumerate}[label=\Roman*]
|
\begin{enumerate}[label=\Roman*]
|
||||||
\item\hfill\\
|
\item\hfill\\
|
||||||
\includegraphics[width=0.6\textwidth]{rm1.png},
|
\includegraphics[width=0.6\textwidth]{rm1.png},
|
||||||
@ -179,8 +212,10 @@ A Reidemeister move is one of the three types of operation on a link diagram as
|
|||||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
||||||
|
|
||||||
\subsection{Seifert surface}
|
\subsection{Seifert surface}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
Let $D$ be an oriented diagram of a link $L$.
|
||||||
|
We change the diagram by smoothing each crossing:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\PICorientpluscross \mapsto
|
\PICorientpluscross \mapsto
|
||||||
\PICorientLRsplit,\\
|
\PICorientLRsplit,\\
|
||||||
@ -192,7 +227,8 @@ a disjoint union of circles on the plane.
|
|||||||
Each circle bounds a disks in
|
Each circle bounds a disks in
|
||||||
$\mathbb{R}^3$
|
$\mathbb{R}^3$
|
||||||
(we choose disks that don't intersect).
|
(we choose disks that don't intersect).
|
||||||
For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one.
|
For each smoothed crossing we add a twisted band:
|
||||||
|
right-handed for a positive and left-handed for a negative one.
|
||||||
We get an orientable surface $\Sigma$
|
We get an orientable surface $\Sigma$
|
||||||
such that $\partial \Sigma = L$.\\
|
such that $\partial \Sigma = L$.\\
|
||||||
|
|
||||||
@ -208,6 +244,7 @@ such that $\partial \Sigma = L$.\\
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
|
|
||||||
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$. Then we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$. Then we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
@ -312,13 +349,13 @@ Seifert surfaces of minimal genus
|
|||||||
\label{fig:unknot}
|
\label{fig:unknot}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{lemma}
|
||||||
$
|
$
|
||||||
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
||||||
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
||||||
$
|
$
|
||||||
where $b_1$ is first Betti number of a surface $\Sigma$.
|
where $b_1$ is first Betti number of a surface $\Sigma$.
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
|
|
||||||
\subsection{Seifert matrix}
|
\subsection{Seifert matrix}
|
||||||
Let $L$ be a link and
|
Let $L$ be a link and
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
|
\begin{lemma}[Milnor Singular Points of Complex Hypersurfaces]
|
||||||
\end{fact}
|
\end{lemma}
|
||||||
%\end{comment}
|
%\end{comment}
|
||||||
\noindent
|
\noindent
|
||||||
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
|
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
|
||||||
|
@ -58,14 +58,12 @@
|
|||||||
{\newline}{}%
|
{\newline}{}%
|
||||||
\theoremstyle{break}
|
\theoremstyle{break}
|
||||||
|
|
||||||
\newtheorem{lemma}{Lemma}[section]
|
|
||||||
\newtheorem{fact}{Fact}[section]
|
|
||||||
\newtheorem{corollary}{Corollary}[section]
|
|
||||||
\newtheorem{proposition}{Proposition}[section]
|
|
||||||
\newtheorem{example}{Example}[section]
|
|
||||||
\newtheorem{problem}{Problem}[section]
|
|
||||||
\newtheorem{definition}{Definition}[section]
|
|
||||||
\newtheorem{theorem}{Theorem}[section]
|
\newtheorem{theorem}{Theorem}[section]
|
||||||
|
\newtheorem{lemma}[theorem]{Lemma}
|
||||||
|
\newtheorem{corollary}[theorem]{Corollary}
|
||||||
|
\newtheorem{proposition}[theorem]{Proposition}\newtheorem{example}[theorem]{Example}
|
||||||
|
\newtheorem{problem}[theorem]{Problem}
|
||||||
|
\newtheorem{definition}[theorem]{Definition}
|
||||||
|
|
||||||
\newcommand{\contradiction}{%
|
\newcommand{\contradiction}{%
|
||||||
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
|
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
|
||||||
|
Loading…
Reference in New Issue
Block a user