lecture from 20.05
BIN
images/3unknots.png
Normal file
After Width: | Height: | Size: 3.8 KiB |
BIN
images/BorromeanRings.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
images/Hopf.png
Normal file
After Width: | Height: | Size: 4.9 KiB |
BIN
images/LinkDiagram1.png
Normal file
After Width: | Height: | Size: 1.2 KiB |
BIN
images/LinkDiagram2.png
Normal file
After Width: | Height: | Size: 967 B |
BIN
images/LinkDiagram3.png
Normal file
After Width: | Height: | Size: 1.2 KiB |
BIN
images/WhiteheadLink.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
images/unknot_and_trefoil.png
Normal file
After Width: | Height: | Size: 6.6 KiB |
@ -1,8 +1,8 @@
|
||||
\documentclass[12pt, twoside]{article}
|
||||
|
||||
\usepackage{comment}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{xfrac}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{csquotes}
|
||||
\usepackage{graphicx}
|
||||
@ -10,18 +10,25 @@
|
||||
\usepackage{titlesec}
|
||||
\usepackage{comment}
|
||||
\usepackage{pict2e}
|
||||
|
||||
\usepackage{hyperref}
|
||||
\usepackage{advdate}
|
||||
\usepackage{amsthm}
|
||||
\usepackage[useregional]{datetime2}
|
||||
|
||||
%... Set the first lecture date
|
||||
\ThisYear{2019}
|
||||
\ThisMonth{3}
|
||||
\ThisDay{5}
|
||||
|
||||
\hypersetup{
|
||||
colorlinks,
|
||||
citecolor=black,
|
||||
filecolor=black,
|
||||
linkcolor=black,
|
||||
urlcolor=black
|
||||
}
|
||||
\usepackage{fontspec}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{unicode-math}
|
||||
|
||||
\graphicspath{ {images/} }
|
||||
|
||||
\newtheorem{lemama}{Lemma}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{fact}{Fact}
|
||||
\newtheorem{example}{Example}
|
||||
%\theoremstyle{definition}
|
||||
@ -29,43 +36,66 @@
|
||||
%\theoremstyle{plain}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{proposition}{Proposition}
|
||||
\newcommand{\contradiction}{%
|
||||
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}%
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%% For quotient groups / modding equiv relations
|
||||
%%%% Use: \quot{A}{B} --> A/B
|
||||
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\overbar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu}
|
||||
\DeclareMathOperator{\Hom}{Hom}
|
||||
\AtBeginDocument{\renewcommand{\setminus}{\mathbin{\backslash}}}
|
||||
|
||||
\input{knots_macros}
|
||||
|
||||
|
||||
\titleformat{\section}{\normalfont \Large \bfseries}
|
||||
\titleformat{\section}{\normalfont \large \bfseries}
|
||||
{Lecture\ \thesection}{2.3ex plus .2ex}{}
|
||||
\titlespacing{\subsection}{2em}{*1}{*1}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%\tableofcontents
|
||||
%\newpage
|
||||
%\input{myNotes}
|
||||
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-02-25}
|
||||
\end{flushright}
|
||||
\begin{definition}
|
||||
A \textbf{knot} $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
||||
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
||||
\begin{align*}
|
||||
\varphi: S^1 \hookrightarrow S^3
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
\noindent
|
||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||
\begin{example}
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
knot and not a knot (not inection), not smooth,
|
||||
\end{example}
|
||||
\begin{definition}
|
||||
\hfill\\
|
||||
%\hfill\\
|
||||
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
|
||||
\begin{align*}
|
||||
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
|
||||
&\Phi(x, t) = \Phi_t(x)
|
||||
\end{align*}
|
||||
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
|
||||
$\Phi_1 = \varphi_1$
|
||||
\\
|
||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Phi$ such that:
|
||||
\begin{align*}
|
||||
&\Psi: S^3 \hookrightarrow S^3\\
|
||||
& \psi_0 = id\\
|
||||
& \psi_1(K_0) = K_1
|
||||
\end{align*}
|
||||
$\Phi_1 = \varphi_1$.
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi$ such that:
|
||||
\begin{align*}
|
||||
&\Psi: S^3 \hookrightarrow S^3,\\
|
||||
& \psi_0 = id ,\\
|
||||
& \psi_1(K_0) = K_1.
|
||||
\end{align*}
|
||||
\end{theorem}
|
||||
\begin{definition}
|
||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
||||
\end{definition}
|
||||
@ -73,21 +103,36 @@ A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\c
|
||||
A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
A trivial link with $3$ components\\
|
||||
A hopf link\\
|
||||
Whitehead link\\
|
||||
Links:
|
||||
\begin{itemize}
|
||||
\item
|
||||
a trivial link with $3$ components:
|
||||
\includegraphics[width=0.13\textwidth]{3unknots.png},
|
||||
\item
|
||||
a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
|
||||
\item
|
||||
a Whitehead link:
|
||||
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
||||
\item
|
||||
Borromean link
|
||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png},
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
\begin{definition}
|
||||
A link diagram is a picture over projection of a link is $S^3$/$R^3$ such that:
|
||||
A link diagram is a picture over projection of a link is $S^3$($\mathbb{R}^3$) such that:
|
||||
\begin{enumerate}
|
||||
\item is non degenerate
|
||||
\item The double points are not degenerated
|
||||
\item There are no triple point
|
||||
\item
|
||||
${D_{\pi}}_{\big|L}$ is non degenerate
|
||||
\includegraphics[width=0.02\textwidth]{LinkDiagram1.png},
|
||||
\item the double points are not degenerate
|
||||
\includegraphics[width=0.02\textwidth]{LinkDiagram2.png},
|
||||
\item there are no triple point
|
||||
\includegraphics[width=0.03\textwidth]{LinkDiagram3.png}.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
||||
Every link admits a link diagram.
|
||||
\begin{comment}
|
||||
|
||||
\subsection{Reidemeister moves}
|
||||
A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}.
|
||||
@ -106,7 +151,8 @@ The third Reidemeister move slides a strand over or under a crossing.
|
||||
Two diagrams of the same link can be
|
||||
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
|
||||
\end{theorem}
|
||||
\section{Z nagrania Kamili}
|
||||
|
||||
\section{}
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\
|
||||
@ -114,6 +160,319 @@ deformed into each other by a finite sequence of Reidemeister moves (and isotopy
|
||||
\end{align*}
|
||||
Fact (Milnor Singular Points of Complex Hypersurfaces):
|
||||
\end{example}
|
||||
\section{} 25.03.19
|
||||
\end{comment}
|
||||
|
||||
An oriented knot is called negative amphichiral if the mirror image $m(K)$ if $K$ is equivalent the reverse knot of $K$. \\
|
||||
\begin{example}[Problem]
|
||||
Prove that if $K$ is negative amphichiral, then $K \# K$ in
|
||||
$\mathbf{C}$
|
||||
\end{example}
|
||||
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-03-04}
|
||||
\end{flushright}
|
||||
\begin{proof}("joke")\\
|
||||
Let $K \in S^3$ be a knot and $N$ be its tubular neighbourhood.
|
||||
\begin{align*}
|
||||
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K)
|
||||
\end{align*}
|
||||
For a pair $(S^3, S^3 \setminus N)$ we have:
|
||||
\begin{align*}
|
||||
H^0(S^3)
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-03-18}
|
||||
\end{flushright}
|
||||
\begin{definition}
|
||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that
|
||||
$\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $.
|
||||
\end{definition}
|
||||
Let $m(K)$ denote a mirror image of a knot $K$.
|
||||
\begin{fact}
|
||||
For any $K$, $K \# m(K)$ is slice.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
Concordance is an equivalence relation.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
$K \# m(K) \sim $ the unknot.
|
||||
\end{fact}
|
||||
\noindent
|
||||
Let $\mathscr{C}$ denote all equivalent classes for knots. $\mathscr{C}$ is a group under taking connected sums, with neutral element (the class defined by) an unknot and inverse element (a class defined by) a mirror image.\\
|
||||
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).\\
|
||||
\begin{example}[Problem]
|
||||
Are there in concordance group torsion elements that are not $2$ torsion elements? (open)
|
||||
\end{example}
|
||||
\noindent
|
||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-04-08}
|
||||
\end{flushright}
|
||||
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
||||
$H_2$ is free (exercise).
|
||||
\begin{align*}
|
||||
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincaré duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
|
||||
\end{align*}
|
||||
Intersection form:
|
||||
$H_2(X, \mathbb{Z}) \times
|
||||
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
|
||||
\\
|
||||
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-05-20}
|
||||
\end{flushright}
|
||||
Let $K \subset S^3$ be a knot, \\
|
||||
$X = S^3 \setminus K$ - a knot complement, \\
|
||||
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ - an infinite cyclic cover (universal abelian cover).
|
||||
\begin{align*}
|
||||
\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
|
||||
\end{align*}
|
||||
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
|
||||
$H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ - Alexander module, \\
|
||||
\begin{align*}
|
||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
|
||||
\end{align*}
|
||||
|
||||
\begin{fact}
|
||||
\begin{align*}
|
||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
|
||||
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}
|
||||
\end{align*}
|
||||
where $V$ is a Seifert matrix.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
\begin{align*}
|
||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
|
||||
(\alpha, \beta) &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
|
||||
\end{align*}
|
||||
\end{fact}
|
||||
\noindent
|
||||
Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition.
|
||||
\begin{align*}
|
||||
&\xi \in S^1 \setminus \{ \pm 1\}
|
||||
\quad
|
||||
p_{\xi} =
|
||||
(t - \xi)(1 - \xi^{-1}) t^{-1}\\
|
||||
&\xi \in \mathbb{R} \setminus \{ \pm 1\}
|
||||
\quad
|
||||
q_{\xi} = (t - \xi)(1 - \xi^{-1}) t^{-1}\\
|
||||
&\xi \notin \mathbb{R} \cup S^1 \quad
|
||||
q_{\xi} = (t - \xi)(t - \overbar{\xi})(1 - \xi^{-1})(1 - \overbar{\xi}^{-1}) t^{-2}\\
|
||||
&\Lambda = \mathbb{R}[t, t^{-1}]\\
|
||||
&\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
|
||||
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
|
||||
\oplus
|
||||
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
|
||||
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}
|
||||
\end{align*}
|
||||
We can make this composition orthogonal with respect to the Blanchfield paring.
|
||||
\vspace{0.5cm}\\
|
||||
Historical remark:
|
||||
\begin{itemize}
|
||||
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
|
||||
\item Walter Neumann, \textit{Invariants of plane curve singularities}
|
||||
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223–232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
|
||||
, 1983,
|
||||
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
|
||||
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
|
||||
\item Maciej Borodzik, Stefan Friedl
|
||||
\textit{The unknotting number and classical invariants II}, 2014.
|
||||
\end{itemize}
|
||||
\vspace{0.5cm}
|
||||
Let $p = p_{\xi}$, $k\geq 0$.
|
||||
\begin{align*}
|
||||
\quot{\Lambda}{p^k \Lambda} \times
|
||||
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
|
||||
(1, 1) &\mapsto \kappa\\
|
||||
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
|
||||
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
|
||||
\text{therfore } p^k \kappa &\in \Lambda\\
|
||||
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
|
||||
\end{align*}
|
||||
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
|
||||
Let $h = p^k \kappa$.
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
\phi_0 ((1, 1))=\frac{+1}{p}\\
|
||||
\phi_1 ((1, 1)) = \frac{-1}{p}
|
||||
\end{align*}
|
||||
$\phi_0$ and $\phi_1$ are not isomorphic.
|
||||
\end{example}
|
||||
\begin{proof}
|
||||
Let $\Phi:
|
||||
\quot{\Lambda}{p^k \Lambda} \longrightarrow
|
||||
\quot{\Lambda}{p^k \Lambda}$
|
||||
be an isomorphism. \\
|
||||
Let: $\Phi(1) = g \in \lambda$
|
||||
\begin{align*}
|
||||
\quot{\Lambda}{p^k \Lambda}
|
||||
\xrightarrow{\enspace \Phi \enspace}&
|
||||
\quot{\Lambda}{p^k \Lambda}\\
|
||||
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
|
||||
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
|
||||
\end{align*}
|
||||
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
|
||||
\begin{align*}
|
||||
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
|
||||
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
|
||||
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
|
||||
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
|
||||
\text{evalueting at $\xi$: }\\
|
||||
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
????????????????????\\
|
||||
\begin{align*}
|
||||
g &= \sum{g_i t^i}\\
|
||||
\overbar{g} &= \sum{g_i t^{-i}}\\
|
||||
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
|
||||
\overbar{g}(\xi) &=\overbar{g(\xi)}
|
||||
\end{align*}
|
||||
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
|
||||
\begin{theorem}
|
||||
Every sesquilinear non-degenerate pairing
|
||||
\begin{align*}
|
||||
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
|
||||
\longleftrightarrow \frac{h}{p^k}
|
||||
\end{align*}
|
||||
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
There are two steps of the proof:
|
||||
\begin{enumerate}
|
||||
\item
|
||||
Reduce to the case when $h$ has a constant sign on $S^1$.
|
||||
\item
|
||||
Prove in the case, when $h$ has a constant sign on $S^1$.
|
||||
\end{enumerate}
|
||||
\begin{lemma}
|
||||
If $p$ is a symmetric polynomial such that$p(\eta)\geq 0$ for all $\eta \in S^1$, then $p$ can be written as a product $p = g \overbar{g}$ for some polynomial $g$.
|
||||
\end{lemma}
|
||||
\begin{proof}[Sketch of proof]
|
||||
Induction over $\deg p$.\\
|
||||
Let $\zeta \notin S^1$ be a root of $p$, $p \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that
|
||||
\begin{align*}
|
||||
(t - \zeta) \mid p,\\
|
||||
(t - \overbar{\zeta}) \mid p,\\
|
||||
(t^{-1} - \zeta) \mid p,\\
|
||||
(t^{-1} - \overbar{\zeta}) \mid p,\\
|
||||
\end{align*}
|
||||
therefore:
|
||||
\begin{align*}
|
||||
p^{\prime} = \frac{p}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
|
||||
p^{\prime} = g^{\prime}\overbar{g}\\
|
||||
\text{we set } g = g^{\prime}(t - \zeta)(t - \overbar{\zeta}\\
|
||||
p = g \overbar{g}
|
||||
\end{align*}
|
||||
Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid p$ (at least - otherwise it would change sign).
|
||||
\begin{align*}
|
||||
p^{\prime} &= \frac{p}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
|
||||
g &= (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}\\
|
||||
(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k} \quad \text{ isometry whenever $g$ is coprime with $p$.}
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
\begin{lemma}\label{L:coprime polynomials}
|
||||
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
|
||||
symmetric polynomials $P$, $Q$ such that
|
||||
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
|
||||
\end{lemma}
|
||||
\begin{proof}[Idea of proof]
|
||||
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
|
||||
\\??????????????????????????\\
|
||||
\begin{align*}
|
||||
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}\\
|
||||
g\overbar{g} h + p^k\omega = 1
|
||||
\end{align*}
|
||||
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
|
||||
\begin{align*}
|
||||
Ph + Qp^{2k} = 1\\
|
||||
p>0 \Rightarrow p = g \overbar{g}\\
|
||||
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
|
||||
\text{so } p \geq 0 \text{ on } S^1\\
|
||||
p(t) = 0 \Leftrightarrow
|
||||
t = \xi or t = \overbar{\xi}\\
|
||||
h(\xi) > 0\\
|
||||
h(\overbar{\xi})>0\\
|
||||
g\overbar{g}h + Qp^{2k} = 1\\
|
||||
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
|
||||
g\overbar{g} \equiv 1 \mod{p^k}
|
||||
\end{align*}
|
||||
???????????????????????????????\\
|
||||
If $p$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
|
||||
\end{proof}
|
||||
?????????????????\\
|
||||
\begin{align*}
|
||||
(\quot{\Lambda}{p_{\xi}^k} \times
|
||||
\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow
|
||||
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
|
||||
(\quot{\Lambda}{q_{\xi}^k} \times
|
||||
\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow
|
||||
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
|
||||
\end{align*}
|
||||
??????????????????? 1 ?? epsilon?\\
|
||||
\begin{theorem}(Matumoto, Conway-Borodzik-Politarczyk)
|
||||
Let $K$ be a knot,
|
||||
\begin{align*}
|
||||
H_1(\widetilde{X}, \Lambda) \times
|
||||
H_1(\widetilde{X}, \Lambda)
|
||||
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}}
|
||||
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
|
||||
(\quot{\Lambda}{p_{\xi}^k})^{m_k}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
|
||||
\sigma(e^{2\pi i \varepsilon} \xi)
|
||||
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
|
||||
\text{then }
|
||||
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
|
||||
\sigma(e^{2\pi i \varepsilon}\xi)
|
||||
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
|
||||
\end{align*}
|
||||
The jump at $\xi$ is equal to
|
||||
$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$.
|
||||
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
|
||||
\end{theorem}
|
||||
\end{proof}
|
||||
\section{}
|
||||
\begin{flushright}
|
||||
\DTMdate{2019-05-27}
|
||||
\end{flushright}
|
||||
....
|
||||
\begin{definition}
|
||||
A square hermitian matrix $A$ of size $n$.
|
||||
\end{definition}
|
||||
|
||||
field of fractions
|
||||
|
||||
\section{}
|
||||
In other words:\\
|
||||
Choose a basis $(b_1, ..., b_i)$ \\
|
||||
???\\
|
||||
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
|
||||
\begin{align*}
|
||||
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
|
||||
\end{align*}
|
||||
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\
|
||||
That means - what is happening on boundary is a measure of degeneracy.
|
||||
\\
|
||||
\vspace{1cm}
|
||||
\begin{align*}
|
||||
H_1(Y, \mathbb{Z}) \times
|
||||
H_1(Y, \mathbb{Z}) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}} \text{ - a linking form}
|
||||
\end{align*}
|
||||
\end{document}
|