lectures_on_knot_theory/lectures_on_knot_theory.tex

1132 lines
36 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[12pt, twoside]{article}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{advdate}
\usepackage{amsthm}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage{csquotes}
\usepackage[useregional]{datetime2}
\usepackage{enumitem}
\usepackage{fontspec}
\usepackage{float}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{pict2e}
\usepackage[pdf]{pstricks}
\usepackage{tikz}
\usepackage{titlesec}
\usepackage{xfrac}
\usepackage{unicode-math}
\usetikzlibrary{cd}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{example}{Example}[section]
\newtheorem{problem}{Problem}[section]
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newcommand{\contradiction}{%
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
\newcommand{\overbar}[1]{%
\mkern 1.5mu=\overline{%
\mkern-1.5mu#1\mkern-1.5mu}%
\mkern 1.5mu}
\newcommand{\sdots}{\smash{\vdots}}
\AtBeginDocument{\renewcommand{\setminus}{%
\mathbin{\backslash}}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Gl}{Gl}
\DeclareMathOperator{\Lk}{lk}
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
Lecture\ \thesection}%
{2.3ex plus .2ex}{}
\titlespacing*{\section}
{0pt}{16.5ex plus 1ex minus .2ex}{4.3ex plus .2ex}
\setlist[itemize]{topsep=0pt,before=%
\leavevmode\vspace{0.5em}}
\input{knots_macros}
\graphicspath{ {images/} }
\begin{document}
\tableofcontents
%\newpage
%\input{myNotes}
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
\begin{definition}
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
\begin{align*}
\varphi: S^1 \hookrightarrow S^3
\end{align*}
\end{definition}
\noindent
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
\begin{example}
\begin{itemize}
\item
Knots:
\includegraphics[width=0.08\textwidth]{unknot.png} (unknot),
\includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil).
\item
Not knots:
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
(it is not an injection),
\includegraphics[width=0.08\textwidth]{not_smooth_knot.png}
(it is not smooth).
\end{itemize}
\end{example}
\begin{definition}
%\hfill\\
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
\begin{align*}
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
&\Phi(x, t) = \Phi_t(x)
\end{align*}
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
$\Phi_1 = \varphi_1$.
\end{definition}
\begin{theorem}
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that:
\begin{align*}
&\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$}\\
&\psi_t: S^3 \hookrightarrow S^3,\\
& \psi_0 = id ,\\
& \psi_1(K_0) = K_1.
\end{align*}
\end{theorem}
\begin{definition}
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
\end{definition}
\begin{definition}
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
\end{definition}
\begin{example}
Links:
\begin{itemize}
\item
a trivial link with $3$ components:
\includegraphics[width=0.2\textwidth]{3unknots.png},
\item
a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
\item
a Whitehead link:
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
\item
Borromean link:
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
\end{itemize}
\end{example}
%
%
%
\begin{definition}
A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that:
\begin{enumerate}[label={(\arabic*)}]
\item
${D_{\pi}}_{\big|L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
\item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
\end{enumerate}
\end{definition}
\noindent
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
Every link admits a link diagram.
\\
Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).\\
We can distinguish two types of crossings: right-handed
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
\subsection{Reidemeister moves}
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
\begin{enumerate}[label=\Roman*]
\item\hfill\\
\includegraphics[width=0.6\textwidth]{rm1.png},
\item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png},
\item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}.
\end{enumerate}
\begin{theorem} [Reidemeister, 1927 ]
Two diagrams of the same link can be
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
\end{theorem}
%
%
%
%The number of Reidemeister Moves Needed for Unknotting
%Joel Hass, Jeffrey C. Lagarias
%(Submitted on 2 Jul 1998)
% Piotr Sumata, praca magisterska
% proof - transversality theorem (Thom)
%Singularities of Differentiable Maps
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
\subsection{Seifert surface}
\noindent
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
\begin{align*}
\PICorientpluscross \mapsto \PICorientLRsplit\\
\PICorientminuscross \mapsto \PICorientLRsplit
\end{align*}
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
\begin{figure}[h]
\fontsize{15}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}}
\caption{Constructing a Seifert surface.}
\label{fig:SeifertAlg}
}
\end{figure}
\noindent
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
\begin{figure}[h]
\begin{center}
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
\end{center}
\caption{Connecting two surfaces.}
\label{fig:SeifertConnect}
\end{figure}
\begin{theorem}[Seifert]
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
\end{theorem}
%
\begin{figure}[h]
\fontsize{12}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}}
\caption{Genus of an orientable surface.}
\label{fig:genera}
}
\end{figure}
%
%
\begin{definition}
The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$.
\end{definition}
\begin{corollary}
A knot $K$ is trivial if and only $g_3(K) = 0$.
\end{corollary}
\noindent
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
\begin{definition}
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
\end{definition}
\hfill
\\
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
\[
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
\begin{example}
\begin{itemize}
\item
Hopf link:
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}},
}
\end{figure}
\item
$T(6, 2)$ link:
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}.
}
\end{figure}
\end{itemize}
\end{example}
\begin{fact}
\[
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
\]
where $b_1$ is first Betti number of $\Sigma$.
\end{fact}
\subsection{Seifert matrix}
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}}
}
\end{figure}
\begin{theorem}
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
\begin{enumerate}[label={(\arabic*)}]
\item
$V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients,
\item
$V \rightarrow
\begin{pmatrix}
\begin{array}{c|c}
V &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 0\\
1 & 0
\end{matrix}
\end{array}
\end{pmatrix} \quad$
or
$\quad
V \rightarrow
\begin{pmatrix}
\begin{array}{c|c}
V &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 1\\
0 & 0
\end{matrix}
\end{array}
\end{pmatrix}$
\item
inverse of (2)
\end{enumerate}
\end{theorem}
\section{\hfill\DTMdate{2019-03-04}}
\begin{theorem}
For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
\end{theorem}
\begin{proof}("joke")\\
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
\begin{align*}
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
\end{align*}
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
\begin{center}
\begin{tikzcd}
[
column sep=0cm, fill=none,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
&\mathbb{Z}
\\
& H^0(S^3) \ar[u,isomorphic] \to
&H^0(S^3 \setminus N) \to
\\
\to H^1(S^3, S^3 \setminus N) \to
& H^1(S^3) \to
& H^1(S^3\setminus N) \to
\\
& 0 \ar[u,isomorphic]&
\\
\to H^2(S^3, S^3 \setminus N) \to
& H^2(S^3) \ar[u,isomorphic] \to
& H^2(S^3\setminus N) \to
\\
\to H^3(S^3, S^3\setminus N)\to
& H^3(S) \to
& 0
\\
& \mathbb{Z} \ar[u,isomorphic] &\\
\end{tikzcd}
\end{center}
\[
H^* (S^3, S^3 \setminus N) \cong H^* (N, \partial N)
\]
\\
??????????????
\\
\end{proof}
\begin{definition}
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
\[
\Delta_K(t) := \det (tS - S^T) \in
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
\]
\end{definition}
\begin{theorem}
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
\end{theorem}
\begin{proof}
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
\begin{enumerate}[label={(\arabic*)}]
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
\begin{align*}
&\det(tS\prime - S\prime^T) =
\det(tCSC^T - (CSC^T)^T) =\\
&\det(tCSC^T - CS^TC^T) =
\det C(tS - S^T)C^T =
\det(tS - S^T)
\end{align*}
\item
Let \\
$ A := t
\begin{pmatrix}
\begin{array}{c|c}
S &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 0\\
1 & 0
\end{matrix}
\end{array}
\end{pmatrix}
-
\begin{pmatrix}
\begin{array}{c|c}
S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 1\\
0 & 0
\end{matrix}
\end{array}
\end{pmatrix}
=
\begin{pmatrix}
\begin{array}{c|c}
tS - S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & -1\\
t & 0
\end{matrix}
\end{array}
\end{pmatrix}
$
\\
\\
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
\end{enumerate}
\end{proof}
%
%
%
\begin{example}
If $K$ is a trefoil then we can take
$S = \begin{pmatrix}
-1 & -1 \\
0 & -1
\end{pmatrix}$. Then
\[
\Delta_K(t) = \det
\begin{pmatrix}
-t + 1 & -t\\
1 & -t +1
\end{pmatrix}
= (t -1)^2 + t = t^2 - t +1 \ne 1
\Rightarrow \text{trefoil is not trivial.}
\]
\end{example}
\begin{fact}
$\Delta_K(t)$ is symmetric.
\end{fact}
\begin{proof}
Let $S$ be an $n \times n$ matrix.
\begin{align*}
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
\end{align*}
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
\end{proof}
\begin{lemma}
\begin{align*}
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
\text{ where } deg (a_n t^n + \cdots + a_1 t^l )= k - l.
\end{align*}
\end{lemma}
\begin{proof}
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
\end{proof}
\begin{example}
There are not trivial knots with Alexander polynomial equal $1$, for example:
\includegraphics[width=0.3\textwidth]{11n34.png}
$\Delta_{11n34} \equiv 1$.
\end{example}
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
%
%
%
\begin{lemma}[Dehn]
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
${D^2 \overset{g}\hookrightarrow M}$ such that:
\[
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
\]
\end{lemma}
\section{}
\begin{example}
\begin{align*}
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\
&F(0) = 0
\end{align*}
\end{example}
????????????
\\
\noindent
as a corollary we see that $K_T^{n, }$ ???? \\
is not slice unless $m=0$.
\begin{theorem}
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
\end{theorem}
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
\end{fact}
%\end{comment}
\noindent
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
\begin{problem}
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
$\mathscr{C}$.
%
%\\
%Hint: $ -K = m(K)^r = (K^r)^r = K$
\end{problem}
\begin{example}
Figure 8 knot is negative amphichiral.
\end{example}
%
%
%
\section{Concordance group \hfill\DTMdate{2019-03-18}}
\begin{definition}
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
\end{definition}
\begin{definition}
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
${\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}}$.
\end{definition}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
}
\end{figure}
\noindent
Let $m(K)$ denote a mirror image of a knot $K$.
\begin{fact}
For any $K$, $K \# m(K)$ is slice.
\end{fact}
\begin{fact}
Concordance is an equivalence relation.
\end{fact}
\begin{fact}\label{fakt:concordance_connected}
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
}
\caption{Sketch for Fakt \ref{fakt:concordance_connected}.}
\label{fig:concordance_sum}
\end{figure}
\end{fact}
\begin{fact}
$K \# m(K) \sim $ the unknot.
\end{fact}
\noindent
\begin{theorem}
Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot.
$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$.
\end{theorem}
\begin{fact}
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).
\end{fact}
\begin{problem}[open]
Are there in concordance group torsion elements that are not $2$ torsion elements?
\end{problem}
\noindent
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
\\
\\
\noindent
Let $\Omega$ be an oriented \\
???????\\
Suppose $\Sigma$ is a Seifert matrix with an intersection form ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z}$ (i.e. there are cycles). \\
??????????????\\
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
Let $B^+$ be a push off of $B$ in the positive normal direction such that
$\partial B^+ = \beta^+$.
Then
$\Lk(\alpha, \beta^+) = A \cdot B^+$
%
%
\\
\section{\hfill\DTMdate{2019-04-08}}
%
%
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
$H_2$ is free (exercise).
\begin{align*}
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
\end{align*}
Intersection form:
$H_2(X, \mathbb{Z}) \times
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
\\
Let $A$ and $B$ be closed, oriented surfaces in $X$.
\begin{proposition}
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
%$A \cdot B$ gives the pairing as ??
\end{proposition}
\section{\hfill\DTMdate{2019-03-11}}
\begin{definition}
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
\end{definition}
\section{\hfill\DTMdate{2019-04-15}}
In other words:\\
Choose a basis $(b_1, ..., b_i)$ \\
???\\
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
\begin{align*}
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
\end{align*}
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\
That means - what is happening on boundary is a measure of degeneracy.
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_1(Y, \mathbb{Z}) &
\times \quad H_1(Y, \mathbb{Z})&
\longrightarrow &
\quot{\mathbb{Q}}{\mathbb{Z}}
\text{ - a linking form}
\\
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
\end{tikzcd}
$(a, b) \mapsto aA^{-1}b^T$
\end{center}
The intersection form on a four-manifold determines the linking on the boundary. \\
\noindent
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
$A = V \times V^T$, where $n = \rank V$.
%\input{ink_diag}
\begin{figure}[h]
\fontsize{40}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
\caption{Pushing the Seifert surface in 4-ball.}
\label{fig:pushSeifert}
}
\end{figure}
\noindent
Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ branched along $\widetilde{\Sigma}$.
\begin{fact}
\begin{itemize}
\item $X$ is a smooth four-manifold,
\item $H_1(X, \mathbb{Z}) =0$,
\item $H_2(X, \mathbb{Z}) \cong \mathbb{Z}^n$
\item The intersection form on $X$ is $V + V^T$.
\end{itemize}
\end{fact}
\noindent
Let $Y = \Sigma(K)$. Then:
\begin{flalign*}
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}&
\\
(a,b) \mapsto a A^{-1} b^{T},\qquad
A = V + V^T&
\\
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}&\\
A \longrightarrow BAC^T \quad \text{Smith normal form}&
\end{flalign*}
???????????????????????\\
In general
\section{\hfill\DTMdate{2019-05-20}}
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
bilinear form - the intersection form on $M$:
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_2(M, \mathbb{Z})&
\times & H_2(M, \mathbb{Z})
\longrightarrow &
\mathbb{Z}
\\
\ar[u,isomorphic] \mathbb{Z}^n && &\\
\end{tikzcd}
\end{center}
\noindent
Let us consider a specific case: $M$ has a boundary $Y = \partial M$.
Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerated in the sense that:
\begin{align*}
H_2(M, \mathbb{Z})
\times H_2(M, \mathbb{Z})
&\longrightarrow
\mathbb{Z} \quad&
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
(a, b) &\mapsto \mathbb{Z} \quad&
a &\mapsto (a, \_) H_2(M, \mathbb{Z})
\end{align*}
has coker precisely $H_1(Y, \mathbb{Z})$.
\\???????????????\\
Let $K \subset S^3$ be a knot, \\
$X = S^3 \setminus K$ - a knot complement, \\
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ - an infinite cyclic cover (universal abelian cover).
\begin{align*}
\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
\end{align*}
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
$H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ - Alexander module, \\
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
\end{align*}
\begin{fact}
\begin{align*}
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
&\text{where $V$ is a Seifert matrix.}
\end{align*}
\end{fact}
\begin{fact}
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
(\alpha, \beta) &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
\end{align*}
\end{fact}
\noindent
Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition.
\begin{align*}
&\xi \in S^1 \setminus \{ \pm 1\}
\quad
p_{\xi} =
(t - \xi)(t - \xi^{-1}) t^{-1}
\\
&\xi \in \mathbb{R} \setminus \{ \pm 1\}
\quad
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
\\
&
\xi \notin \mathbb{R} \cup S^1 \quad
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})(t - \overbar{\xi}^{-1}) t^{-2}\\
&
\Lambda = \mathbb{R}[t, t^{-1}]\\
&\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
\oplus
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
\end{align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace{0.5cm}\\
Historical remark:
\begin{itemize}
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
\item Walter Neumann, \textit{Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit{The unknotting number and classical invariants II}, 2014.
\end{itemize}
\vspace{0.5cm}
Let $p = p_{\xi}$, $k\geq 0$.
\begin{align*}
\quot{\Lambda}{p^k \Lambda} \times
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
(1, 1) &\mapsto \kappa\\
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\text{therfore } p^k \kappa &\in \Lambda\\
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
\end{align*}
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
Let $h = p^k \kappa$.
\begin{example}
\begin{align*}
\phi_0 ((1, 1))=\frac{+1}{p}\\
\phi_1 ((1, 1)) = \frac{-1}{p}
\end{align*}
$\phi_0$ and $\phi_1$ are not isomorphic.
\end{example}
\begin{proof}
Let $\Phi:
\quot{\Lambda}{p^k \Lambda} \longrightarrow
\quot{\Lambda}{p^k \Lambda}$
be an isomorphism. \\
Let: $\Phi(1) = g \in \lambda$
\begin{align*}
\quot{\Lambda}{p^k \Lambda}
\xrightarrow{\enspace \Phi \enspace}&
\quot{\Lambda}{p^k \Lambda}\\
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
\end{align*}
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
\begin{align*}
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
\text{evalueting at $\xi$: }\\
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
\end{align*}
\end{proof}
????????????????????\\
\begin{align*}
g &= \sum{g_i t^i}\\
\overbar{g} &= \sum{g_i t^{-i}}\\
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
\overbar{g}(\xi) &=\overbar{g(\xi)}
\end{align*}
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
\begin{theorem}
Every sesquilinear non-degenerate pairing
\begin{align*}
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
\longleftrightarrow \frac{h}{p^k}
\end{align*}
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
\end{theorem}
\begin{proof}
There are two steps of the proof:
\begin{enumerate}
\item
Reduce to the case when $h$ has a constant sign on $S^1$.
\item
Prove in the case, when $h$ has a constant sign on $S^1$.
\end{enumerate}
\begin{lemma}
If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$.
\end{lemma}
\begin{proof}[Sketch of proof]
Induction over $\deg P$.\\
Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by
$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$.
Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
&P^{\prime} = g^{\prime}\overbar{g}
\end{align*}
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
\end{align*}
The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$.
\end{proof}
\begin{lemma}\label{L:coprime polynomials}
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
symmetric polynomials $P$, $Q$ such that
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
\end{lemma}
\begin{proof}[Idea of proof]
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
\\??????????????????????????\\
\begin{flalign*}
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\
g\overbar{g} h + p^k\omega = 1&
\end{flalign*}
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
\begin{align*}
Ph + Qp^{2k} = 1\\
p>0 \Rightarrow p = g \overbar{g}\\
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
\text{so } p \geq 0 \text{ on } S^1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar{\xi}\\
h(\xi) > 0\\
h(\overbar{\xi})>0\\
g\overbar{g}h + Qp^{2k} = 1\\
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
g\overbar{g} \equiv 1 \mod{p^k}
\end{align*}
???????????????????????????????\\
If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
\end{proof}
?????????????????\\
\begin{align*}
(\quot{\Lambda}{p_{\xi}^k} \times
\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
(\quot{\Lambda}{q_{\xi}^k} \times
\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
\end{align*}
??????????????????? 1 ?? epsilon?\\
\begin{theorem}(Matumoto, Conway-Borodzik-Politarczyk)
Let $K$ be a knot,
\begin{align*}
&H_1(\widetilde{X}, \Lambda) \times
H_1(\widetilde{X}, \Lambda)
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}}
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
(\quot{\Lambda}{p_{\xi}^k})^{m_k}
\end{align*}
\begin{align*}
\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
\sigma(e^{2\pi i \varepsilon} \xi)
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
\text{then }
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
\sigma(e^{2\pi i \varepsilon}\xi)
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
\end{align*}
The jump at $\xi$ is equal to
$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$.
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
\end{theorem}
\end{proof}
\section{\hfill\DTMdate{2019-05-27}}
....
\begin{definition}
A square hermitian matrix $A$ of size $n$.
\end{definition}
field of fractions
\section{\hfill\DTMdate{2019-06-03}}
\begin{theorem}
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4(K)$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
\noindent
Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ .
\end{proof}
???????????????????\\
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
\subsection{Surgery}
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \{pt\}]}$ and ${\beta=[\{pt\} \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on homology group:
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}
\end{align*}
\end{theorem}
\section{balagan}
\noindent
\begin{proof}
By Poincar\'e duality we know that:
\begin{align*}
H_3(\Omega, Y) &\cong H^0(\Omega),\\
H_2(Y) &\cong H^0(Y),\\
H_2(\Omega) &\cong H^1(\Omega, Y),\\
H_2(\Omega, Y) &\cong H^1(\Omega).
\end{align*}
Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
= \dim_{\mathbb{Q}} V
$.
\end{proof}
\noindent
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $4$ - manifolds???\\
?????\\
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
\begin{align*}
\newcommand\coolover[2]%
{\mathrlap{\smash{\overbrace{\phantom{%
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
\newcommand\coolleftbrace[2]{%
#1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.}
\newcommand\coolrightbrace[2]{%
\left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2}
\vphantom{% phantom stuff for correct box dimensions
\begin{matrix}
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
\underbrace{pqr}_{\mbox{$S$}}
\end{matrix}}%
V =
\begin{matrix}% matrix for left braces
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
\\ \\ \\ \\
\end{matrix}%
\begin{pmatrix}
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
\sdots & & \sdots & \sdots & & \sdots \\
0 & \dots & 0 & * & \dots & *\\
* & \dots & * & * & \dots & *\\
\sdots & & \sdots & \sdots & & \sdots \\
* & \dots & * & * & \dots & *
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
\end{align*}
\end{document}