This commit is contained in:
Maria Marchwicka 2019-06-08 15:10:04 +02:00
parent 401a9233b9
commit 1b0ca437c8
1 changed files with 32 additions and 1 deletions

View File

@ -1047,6 +1047,37 @@ A square hermitian matrix $A$ of size $n$.
field of fractions
\section{\hfill\DTMdate{2019-06-03}}
\begin{theorem}
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4(K)$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
\noindent
Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ .
\end{proof}
???????????????????\\
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
\subsection{Surgery}
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \{pt\}]}$ and ${\beta=[\{pt\} \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on homology group:
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}
\end{align*}
\end{theorem}
\section{balagan}
@ -1064,7 +1095,7 @@ Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
$.
\end{proof}
\noindent
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on 4\\
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $4$ - manifolds???\\
?????\\
has a subspace of dimension $g_{\Sigma}$ on which it is zero: