74 lines
2.4 KiB
TeX
74 lines
2.4 KiB
TeX
\begin{theorem}
|
|
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
|
|
\[
|
|
u(K) \geq g_4(K)
|
|
\]
|
|
\begin{proof}
|
|
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
|
|
\\
|
|
???????????????
|
|
\\
|
|
\begin{eqnarray*}
|
|
\chi (D^2) = 1 \\
|
|
\chi (\Delta) = 1 - u\\
|
|
\gamma = 0 \in \pi_1(B^4 \setminus S)
|
|
\end{eqnarray*}
|
|
|
|
??????????????
|
|
\\
|
|
\noindent
|
|
Remove from $\Delta$ the two self intersecting disks and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$.
|
|
\end{proof}
|
|
%Tim D. Cochran and Peter Teichner
|
|
\begin{example}
|
|
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
|
|
\end{example}
|
|
%ref Structure in the classical knot concordance group
|
|
%Tim D. Cochran, Kent E. Orr, Peter Teichner
|
|
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
|
|
\subsection*{Surgery}
|
|
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
|
|
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^2$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
|
|
Consider an induced map on the homology group:
|
|
\begin{align*}
|
|
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
|
|
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
|
|
\phi_* &=
|
|
\begin{pmatrix}
|
|
p & q\\
|
|
r & s
|
|
\end{pmatrix}.
|
|
\end{align*}
|
|
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
|
|
\end{theorem}
|
|
\vspace{10cm}
|
|
\begin{theorem}
|
|
Every such a matrix can be realized as a torus.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\begin{enumerate}[label={(\Roman*)}]
|
|
\item
|
|
Geometric reason
|
|
\begin{align*}
|
|
\phi_t:
|
|
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
|
|
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
|
|
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
|
|
(x, y) & \mapsto (-y, x)
|
|
\end{align*}
|
|
\item
|
|
\end{enumerate}
|
|
\end{proof}
|
|
\begin{figure}[h]
|
|
\fontsize{20}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{0.5\textwidth}{!}{\input{images/dehn_twist.pdf_tex}}
|
|
\caption{Dehn twist.}
|
|
\label{fig:dehn_twist}
|
|
}
|
|
\end{figure}
|
|
|
|
|
|
|