lectures_on_knot_theory/lectures_on_knot_theory.tex

119 lines
3.5 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[12pt, twoside]{article}
\usepackage{comment}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[english]{babel}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{float}
\usepackage{titlesec}
\usepackage{comment}
\usepackage{pict2e}
\usepackage{advdate}
%... Set the first lecture date
\ThisYear{2019}
\ThisMonth{3}
\ThisDay{5}
\graphicspath{ {images/} }
\newtheorem{lemama}{Lemma}
\newtheorem{fact}{Fact}
\newtheorem{example}{Example}
%\theoremstyle{definition}
\newtheorem{definition}{Definition}
%\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{proposition}{Proposition}
\input{knots_macros}
\titleformat{\section}{\normalfont \Large \bfseries}
{Lecture\ \thesection}{2.3ex plus .2ex}{}
\titlespacing{\subsection}{2em}{*1}{*1}
\begin{document}
%\input{myNotes}
\section{}
\begin{definition}
A \textbf{knot} $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
\begin{align*}
\varphi: S^1 \hookrightarrow S^3
\end{align*}
\end{definition}
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
\begin{definition}
\hfill\\
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
\begin{align*}
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
&\Phi(x, t) = \Phi_t(x)
\end{align*}
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
$\Phi_1 = \varphi_1$
\\
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Phi$ such that:
\begin{align*}
&\Psi: S^3 \hookrightarrow S^3\\
& \psi_0 = id\\
& \psi_1(K_0) = K_1
\end{align*}
\end{definition}
\begin{definition}
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
\end{definition}
\begin{definition}
A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
\end{definition}
\begin{example}
A trivial link with $3$ components\\
A hopf link\\
Whitehead link\\
Borromean link
\end{example}
\begin{definition}
A link diagram is a picture over projection of a link is $S^3$/$R^3$ such that:
\begin{enumerate}
\item is non degenerate
\item The double points are not degenerated
\item There are no triple point
\end{enumerate}
\end{definition}
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
Every link admits a link diagram.
\subsection{Reidemeister moves}
A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}.
%
The first Reidemeister move inserts or removes a coil.
%
The second Reidemeister move slides a strand and inserts or removes two crossings of opposite sign.
%
The third Reidemeister move slides a strand over or under a crossing.
\begin{figure}[H]
\centering
\includegraphics[width=0.7\textwidth]{moves.png}
\caption{\label{fig: reidemeister}Reidemeister moves (adapted from Adams).}
\end{figure}
\begin{theorem} [Reidemeisters Theorem]
Two diagrams of the same link can be
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
\end{theorem}
\section{Z nagrania Kamili}
\begin{example}
\begin{align*}
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{a polynomial} \\
&F(0) = 0
\end{align*}
Fact (Milnor Singular Points of Complex Hypersurfaces):
\end{example}
\section{} 25.03.19
\end{document}