lectures_on_knot_theory/lec_03_06.tex

100 lines
3.4 KiB
TeX

\begin{theorem}
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
???????????????
\\
\begin{eqnarray*}
\chi (D^2) = 1 \\
\chi (\Delta) = 1 - u\\
\gamma = 0 \in \pi_1(B^4 \setminus S)
\end{eqnarray*}
??????????????
\\
\noindent
Remove from $\Delta$ the two self intersecting disks and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$.
\end{proof}
%Tim D. Cochran and Peter Teichner
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
%ref Structure in the classical knot concordance group
%Tim D. Cochran, Kent E. Orr, Peter Teichner
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
\subsection*{Surgery}
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^2$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on the homology group:
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}.
\end{align*}
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
\end{theorem}
\vspace{10cm}
\begin{theorem}
Every such a matrix can be realized as a torus.
\end{theorem}
\begin{proof}
\begin{enumerate}[label={(\Roman*)}]
\item
Geometric reason
\begin{align*}
\phi_t:
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
(x, y) & \mapsto (-y, x)
\end{align*}
\item
\end{enumerate}
\end{proof}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/dehn_twist.pdf_tex}}
\caption{Dehn twist.}
\label{fig:dehn_twist}
}
\end{figure}
\begin{proof}[Sketch of proof]
We will show that each diffeomorphism is isotopic to $\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}$.
\begin{equation*}
\quot{\Diff_+(S^1 \times S^1)}{\Iso(S^1 \times S^1)} = \mcg(S^1 \times S^1) = \Sl(2, \mathbb{Z})
\end{equation*}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.4\textwidth}{!}{\input{images/torus_mu_lambda.pdf_tex}}
\caption{Choice of meridian and longitude.}
\label{fig:torus_twist}
}
\end{figure}
\end{proof}
Let $N = D^2 \times S$ be a tubular neighbourhood of a knot $K$. Consider its boundary $\partial N = S^1 \times S^1$. There exists a simple closed curve $\mu \subset \partial N$ (a meridian) that bounds a disk in $N$. We choose another simple closed curve $\lambda$ (a longitude) so that $\Lk(\lambda, K) = 0$. \\
????????
\\
$\lambda \mu = 1 $ intersection\\
$\pi_0 (\Gl(2, \mathbb{R})$\\
???????????
\\
In other words a homotopy class: $[\lambda] = 0$ in $H_1(S^3 \setminus N, \mathbb{Z})$.