Everything - i think - about sigma function or search for null signature is removed.
This commit is contained in:
parent
f12976180e
commit
58986ff162
@ -32,7 +32,6 @@ class SignatureFunction(object):
|
|||||||
self.cnt_signature_jumps = counter
|
self.cnt_signature_jumps = counter
|
||||||
# self.tikz_plot("bum.tex")
|
# self.tikz_plot("bum.tex")
|
||||||
|
|
||||||
|
|
||||||
def is_zero_everywhere(self):
|
def is_zero_everywhere(self):
|
||||||
return not any(self.cnt_signature_jumps.values())
|
return not any(self.cnt_signature_jumps.values())
|
||||||
|
|
||||||
@ -178,6 +177,7 @@ class SignatureFunction(object):
|
|||||||
f.write("\\end{document}\n")
|
f.write("\\end{document}\n")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class TorusCable(object):
|
class TorusCable(object):
|
||||||
def __init__(self, knot_formula, k_vector=None, q_vector=None):
|
def __init__(self, knot_formula, k_vector=None, q_vector=None):
|
||||||
|
|
||||||
@ -194,13 +194,6 @@ class TorusCable(object):
|
|||||||
self._sigma_function = None
|
self._sigma_function = None
|
||||||
self._signature_as_function_of_theta = None
|
self._signature_as_function_of_theta = None
|
||||||
|
|
||||||
# SIGMA & SIGNATURE
|
|
||||||
@property
|
|
||||||
def sigma_function(self):
|
|
||||||
if self._sigma_function is None:
|
|
||||||
self._sigma_function = self.get_sigma_function()
|
|
||||||
return self._sigma_function
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def signature_as_function_of_theta(self):
|
def signature_as_function_of_theta(self):
|
||||||
if self._signature_as_function_of_theta is None:
|
if self._signature_as_function_of_theta is None:
|
||||||
@ -539,7 +532,7 @@ class TorusCable(object):
|
|||||||
get_summand_signture_function_docsting
|
get_summand_signture_function_docsting
|
||||||
return get_summand_signture_function
|
return get_summand_signture_function
|
||||||
|
|
||||||
def is_metaboliser(self, theta):
|
def is_metabolizer(self, theta):
|
||||||
i = 1
|
i = 1
|
||||||
sum = 0
|
sum = 0
|
||||||
for idx, el in enumerate(theta):
|
for idx, el in enumerate(theta):
|
||||||
@ -570,220 +563,69 @@ class TorusCable(object):
|
|||||||
# bad_vectors.append(vector)
|
# bad_vectors.append(vector)
|
||||||
# return good_vectors, bad_vectors
|
# return good_vectors, bad_vectors
|
||||||
|
|
||||||
# searching for signature == 0
|
|
||||||
def get_number_of_combinations_of_theta(self):
|
|
||||||
number_of_combinations = 1
|
|
||||||
for knot in self.knot_sum:
|
|
||||||
number_of_combinations *= (2 * abs(knot[-1]) + 1)
|
|
||||||
return number_of_combinations
|
|
||||||
|
|
||||||
# searching for signature == 0
|
def is_signature_big_in_ranges(self, ranges_list):
|
||||||
def check_for_null_theta_combinations(self, verbose=False):
|
is_big = True
|
||||||
list_of_good_vectors= []
|
for theta in it.product(*ranges_list):
|
||||||
number_of_null_comb = 0
|
if not any(theta):
|
||||||
f = self.signature_as_function_of_theta
|
continue
|
||||||
range_list = [range(abs(knot[-1]) + 1) for knot in self.knot_sum]
|
|
||||||
for theta_vector in it.product(*range_list):
|
|
||||||
if f(*theta_vector).is_zero_everywhere():
|
|
||||||
list_of_good_vectors.append(theta_vector)
|
|
||||||
m = len([theta for theta in theta_vector if theta != 0])
|
|
||||||
number_of_null_comb += 2^m
|
|
||||||
return number_of_null_comb, list_of_good_vectors
|
|
||||||
|
|
||||||
# searching for signature == 0
|
we_have_a_problem = True
|
||||||
def eval_cable_for_null_signature(self, print_results=False, verbose=False):
|
if self.is_metabolizer(theta):
|
||||||
# search for zero combinations
|
for shift in range(1, self.q_order):
|
||||||
number_of_all_comb = self.get_number_of_combinations_of_theta()
|
shifted_theta = [(shift * th) % self.last_q_list[i]
|
||||||
result = self.check_for_null_theta_combinations(verbose=verbose)
|
for i, th in enumerate(theta)]
|
||||||
number_of_null_comb, list_of_good_vectors = result
|
shifted_theta = [min(th, self.last_q_list[i] - th)
|
||||||
|
for i, th in enumerate(shifted_theta)]
|
||||||
|
sf = self.signature_as_function_of_theta(*shifted_theta)
|
||||||
|
extremum = abs(sf.extremum())
|
||||||
|
if shift > 1:
|
||||||
|
print(shifted_theta, end=" ")
|
||||||
|
print(extremum)
|
||||||
|
if extremum > 5 + np.count_nonzero(shifted_theta):
|
||||||
|
# print("ok")
|
||||||
|
we_have_a_problem = False
|
||||||
|
break
|
||||||
|
elif shift == 1:
|
||||||
|
print("*" * 10)
|
||||||
|
print(shifted_theta, end=" ")
|
||||||
|
print(extremum)
|
||||||
|
if we_have_a_problem:
|
||||||
|
is_big = False
|
||||||
|
break
|
||||||
|
if not is_big:
|
||||||
|
print("we have a big problem")
|
||||||
|
return is_big
|
||||||
|
|
||||||
if print_results:
|
def is_signature_big_for_all_metabolizers(self):
|
||||||
print()
|
if len(self.knot_sum) == 8:
|
||||||
print(self.knot_description)
|
for shift in range(0, 8, 4):
|
||||||
print("Zero cases: " + str(number_of_null_comb))
|
ranges_list = 8 * [range(0, 1)]
|
||||||
print("All cases: " + str(number_of_all_comb))
|
ranges_list[shift : shift + 3] = [range(0, i + 1) for i in \
|
||||||
if list_of_good_vectors:
|
self.last_k_list[shift: shift + 3]]
|
||||||
print("Zero theta combinations: ")
|
ranges_list[shift + 3] = range(0, 2)
|
||||||
for el in list_of_good_vectors:
|
if not self.is_signature_big_in_ranges(ranges_list):
|
||||||
print(el)
|
return False
|
||||||
if number_of_null_comb^2 >= number_of_all_comb:
|
else:
|
||||||
return number_of_null_comb, number_of_all_comb
|
print("\n\nok")
|
||||||
return None
|
return True
|
||||||
|
|
||||||
|
elif len(self.knot_sum) == 4:
|
||||||
|
print("\n\n\nhohohohohoho")
|
||||||
|
upper_bounds = self.last_k_list[:3]
|
||||||
|
ranges_list = [range(0, i + 1) for i in upper_bounds]
|
||||||
|
ranges_list.append(range(0, 2))
|
||||||
|
if not self.is_signature_big_in_ranges(ranges_list):
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
##############################################################################
|
msg = "Function implemented only for knots with 4 or 8 summands"
|
||||||
# sigma function
|
raise ValueError(msg)
|
||||||
|
|
||||||
def get_sigma_function(self):
|
|
||||||
if len(self.k_vector) != 4:
|
|
||||||
msg = "This function is not implemented for k_vectors " +\
|
|
||||||
"with len other than 4."
|
|
||||||
raise IndexError(msg)
|
|
||||||
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
|
|
||||||
last_q = 2 * k_4 + 1
|
|
||||||
ksi = 1/last_q
|
|
||||||
sigma_q_1 = self.get_untwisted_signature_function(k_1)
|
|
||||||
sigma_q_2 = self.get_untwisted_signature_function(k_2)
|
|
||||||
sigma_q_3 = self.get_untwisted_signature_function(k_3)
|
|
||||||
|
|
||||||
def sigma_function(theta_vector, print_results=False):
|
|
||||||
# "untwisted" part (Levine-Tristram signatures)
|
|
||||||
a_1, a_2, a_3, a_4 = theta_vector
|
|
||||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
|
||||||
sigma_q_2(ksi * a_2) +
|
|
||||||
sigma_q_3(ksi * a_3) -
|
|
||||||
sigma_q_3(ksi * a_4) +
|
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
|
||||||
sigma_q_1(ksi * a_4 * 2))
|
|
||||||
# "twisted" part
|
|
||||||
tp = [0, 0, 0, 0]
|
|
||||||
for i, a in enumerate(theta_vector):
|
|
||||||
if a:
|
|
||||||
tp[i] = -last_q + 2 * a - 2 * (a^2/last_q)
|
|
||||||
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
|
||||||
# if print_results:
|
|
||||||
# self.print_results_LT(theta_vector, untwisted_part)
|
|
||||||
# self.print_results_LT(theta_vector, twisted_part)
|
|
||||||
|
|
||||||
sigma_v = untwisted_part + twisted_part
|
|
||||||
return sigma_v
|
|
||||||
return sigma_function
|
|
||||||
|
|
||||||
def print_results_LT(self, theta_vector, untwisted_part):
|
|
||||||
knot_description = self.knot_description
|
|
||||||
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
|
|
||||||
a_1, a_2, a_3, a_4 = theta_vector
|
|
||||||
last_q = 2 * k_4 + 1
|
|
||||||
ksi = 1/last_q
|
|
||||||
sigma_q_1 = self.get_untwisted_signature_function(k_1)
|
|
||||||
sigma_q_2 = self.get_untwisted_signature_function(k_2)
|
|
||||||
sigma_q_3 = self.get_untwisted_signature_function(k_3)
|
|
||||||
print("\n\nLevine-Tristram signatures for the cable sum: ")
|
|
||||||
print(knot_description)
|
|
||||||
print("and characters:\n" + str(theta_vector) + ",")
|
|
||||||
print("ksi = " + str(ksi))
|
|
||||||
print("\n\n2 * (sigma_q_2(ksi * a_1) + " + \
|
|
||||||
"sigma_q_1(ksi * a_1 * 2) - " +\
|
|
||||||
"sigma_q_2(ksi * a_2) + " +\
|
|
||||||
"sigma_q_3(ksi * a_3) - " +\
|
|
||||||
"sigma_q_3(ksi * a_4) - " +\
|
|
||||||
"sigma_q_1(ksi * a_4 * 2))" +\
|
|
||||||
\
|
|
||||||
" = \n\n2 * (sigma_q_2(" + \
|
|
||||||
str(ksi) + " * " + str(a_1) + \
|
|
||||||
") + sigma_q_1(" + \
|
|
||||||
str(ksi) + " * " + str(a_1) + " * 2" + \
|
|
||||||
") - sigma_q_2(" + \
|
|
||||||
str(ksi) + " * " + str(a_2) + \
|
|
||||||
") + sigma_q_3(" + \
|
|
||||||
str(ksi) + " * " + str(a_3) + \
|
|
||||||
") - sigma_q_3(" + \
|
|
||||||
str(ksi) + " * " + str(a_4) + \
|
|
||||||
") - sigma_q_1(" + \
|
|
||||||
str(ksi) + " * " + str(a_4) + " * 2)) " + \
|
|
||||||
\
|
|
||||||
" = \n\n2 * (sigma_q_2(" + \
|
|
||||||
str(mod_one(ksi * a_1)) + \
|
|
||||||
") + sigma_q_1(" + \
|
|
||||||
str(mod_one(ksi * a_1 * 2)) + \
|
|
||||||
") - sigma_q_2(" + \
|
|
||||||
str(mod_one(ksi * a_2)) + \
|
|
||||||
") + sigma_q_3(" + \
|
|
||||||
str(mod_one(ksi * a_3)) + \
|
|
||||||
") - sigma_q_3(" + \
|
|
||||||
str(mod_one(ksi * a_4)) + \
|
|
||||||
") - sigma_q_1(" + \
|
|
||||||
str(mod_one(ksi * a_4 * 2)) + \
|
|
||||||
\
|
|
||||||
") = \n\n2 * ((" + \
|
|
||||||
str(sigma_q_2(ksi * a_1)) + \
|
|
||||||
") + (" + \
|
|
||||||
str(sigma_q_1(ksi * a_1 * 2)) + \
|
|
||||||
") - (" + \
|
|
||||||
str(sigma_q_2(ksi * a_2)) + \
|
|
||||||
") + (" + \
|
|
||||||
str(sigma_q_3(ksi * a_3)) + \
|
|
||||||
") - (" + \
|
|
||||||
str(sigma_q_3(ksi * a_4)) + \
|
|
||||||
") - (" + \
|
|
||||||
str(sigma_q_1(ksi * a_4 * 2)) + ")) = " + \
|
|
||||||
"\n\n2 * (" + \
|
|
||||||
str(sigma_q_2(ksi * a_1) +
|
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
|
||||||
sigma_q_2(ksi * a_2) +
|
|
||||||
sigma_q_3(ksi * a_3) -
|
|
||||||
sigma_q_3(ksi * a_4) -
|
|
||||||
sigma_q_1(ksi * a_4 * 2)) + \
|
|
||||||
") = " + str(untwisted_part))
|
|
||||||
print("\nSignatures:")
|
|
||||||
print("\nq_1 = " + str(2 * k_1 + 1) + ": " + repr(sigma_q_1))
|
|
||||||
print("\nq_2 = " + str(2 * k_2 + 1) + ": " + repr(sigma_q_2))
|
|
||||||
print("\nq_3 = " + str(2 * k_3 + 1) + ": " + repr(sigma_q_3))
|
|
||||||
|
|
||||||
def print_results_sigma(self, theta_vector, twisted_part):
|
|
||||||
a_1, a_2, a_3, a_4 = theta_vector
|
|
||||||
knot_description = self.knot_description
|
|
||||||
last_q = self.q_vector[-1]
|
|
||||||
print("\n\nSigma values for the cable sum: ")
|
|
||||||
print(knot_description)
|
|
||||||
print("and characters: " + str(v_theta))
|
|
||||||
print("\nsigma(T_{2, q_4}, ksi_a) = " + \
|
|
||||||
"-q + (2 * a * (q_4 - a)/q_4) " +\
|
|
||||||
"= -q + 2 * a - 2 * a^2/q_4 if a != 0,\n\t\t\t" +\
|
|
||||||
" = 0 if a == 0.")
|
|
||||||
print("\nsigma(T_{2, q_4}, chi_a_1) = ", end="")
|
|
||||||
if a_1:
|
|
||||||
print("- (" + str(last_q) + ") + 2 * " + str(a_1) + " + " +\
|
|
||||||
"- 2 * " + str(a_1^2) + "/" + str(last_q) + \
|
|
||||||
" = " + str(tp[0]))
|
|
||||||
else:
|
|
||||||
print("0")
|
|
||||||
print("\nsigma(T_{2, q_4}, chi_a_2) = ", end ="")
|
|
||||||
if a_2:
|
|
||||||
print("- (" + str(last_q) + ") + 2 * " + str(a_2) + " + " +\
|
|
||||||
"- 2 * " + str(a_2^2) + "/" + str(last_q) + \
|
|
||||||
" = " + str(tp[1]))
|
|
||||||
else:
|
|
||||||
print("0", end="")
|
|
||||||
print("\nsigma(T_{2, q_4}, chi_a_3) = ", end="")
|
|
||||||
if a_3:
|
|
||||||
print("- (" + str(last_q) + ") + 2 * " + str(a_3) + " + " +\
|
|
||||||
"- 2 * " + str(a_3^2) + "/" + str(last_q) + \
|
|
||||||
" = " + str(tp[2]))
|
|
||||||
else:
|
|
||||||
print("0", end="")
|
|
||||||
print("\nsigma(T_{2, q_4}, chi_a_4) = ", end="")
|
|
||||||
if a_4:
|
|
||||||
print("- (" + str(last_q) + ") + 2 * " + str(a_4) + " + " +\
|
|
||||||
"- 2 * " + str(a_4^2) + "/" + str(last_q) + \
|
|
||||||
" = " + str(tp[3]))
|
|
||||||
else:
|
|
||||||
print("0")
|
|
||||||
|
|
||||||
print("\n\nsigma(T_{2, q_4}, chi_a_1) " + \
|
|
||||||
"- sigma(T_{2, q_4}, chi_a_2) " + \
|
|
||||||
"+ sigma(T_{2, q_4}, chi_a_3) " + \
|
|
||||||
"- sigma(T_{2, q_4}, chi_a_4) =\n" + \
|
|
||||||
"sigma(T_{2, q_4}, " + str(a_1) + \
|
|
||||||
") - sigma(T_{2, q_4}, " + str(a_2) + \
|
|
||||||
") + sigma(T_{2, q_4}, " + str(a_3) + \
|
|
||||||
") - sigma(T_{2, q_4}, " + str(a_4) + ") = " + \
|
|
||||||
str(tp[0] - tp[1] + tp[2] - tp[3]))
|
|
||||||
|
|
||||||
def mod_one(n):
|
def mod_one(n):
|
||||||
return n - floor(n)
|
return n - floor(n)
|
||||||
|
|
||||||
TorusCable.get_number_of_combinations_of_theta.__doc__ = \
|
|
||||||
"""
|
|
||||||
Arguments:
|
|
||||||
arbitrary number of lists of numbers, each list encodes a single cable
|
|
||||||
Return:
|
|
||||||
number of possible theta values combinations that could be applied
|
|
||||||
for a given cable sum,
|
|
||||||
i.e. the product of q_j for j = {1,.. n},
|
|
||||||
where n is a number of direct components in the cable sum,
|
|
||||||
and q_j is the last q parameter for the component (a single cable)
|
|
||||||
"""
|
|
||||||
|
|
||||||
TorusCable.get_knot_descrption.__doc__ = \
|
TorusCable.get_knot_descrption.__doc__ = \
|
||||||
"""
|
"""
|
||||||
@ -794,30 +636,6 @@ TorusCable.get_knot_descrption.__doc__ = \
|
|||||||
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
||||||
"""
|
"""
|
||||||
|
|
||||||
TorusCable.eval_cable_for_null_signature.__doc__ = \
|
|
||||||
"""
|
|
||||||
This function calculates all possible twisted signature functions for
|
|
||||||
a knot that is given as an argument. The knot should be encoded as a list
|
|
||||||
of its direct component. Each component schould be presented as a list
|
|
||||||
of integers. This integers correspond to the k - values in each component/
|
|
||||||
cable. If a component is a mirror image of a cable the minus sign should
|
|
||||||
be written before each number for this component. For example:
|
|
||||||
eval_cable_for_null_signature([[1, 8], [2], [-2, -8], [-2]])
|
|
||||||
eval_cable_for_null_signature([[1, 2], [-1, -2]])
|
|
||||||
|
|
||||||
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
|
|
||||||
|
|
||||||
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
|
||||||
Zero cases: 1
|
|
||||||
All cases: 1225
|
|
||||||
Zero theta combinations:
|
|
||||||
(0, 0, 0, 0)
|
|
||||||
|
|
||||||
sage:
|
|
||||||
The numbers given to the function eval_cable_for_null_signature
|
|
||||||
are k-values for each component/cable in a direct sum.
|
|
||||||
"""
|
|
||||||
|
|
||||||
TorusCable.get_signature_as_function_of_theta.__doc__ = \
|
TorusCable.get_signature_as_function_of_theta.__doc__ = \
|
||||||
"""
|
"""
|
||||||
Function intended to construct signature function for a connected
|
Function intended to construct signature function for a connected
|
||||||
|
131
main.sage
131
main.sage
@ -1,11 +1,70 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
attach("cable_signature.sage")
|
import os
|
||||||
# attach("my_signature.sage")
|
import sys
|
||||||
|
|
||||||
|
import itertools as it
|
||||||
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def main():
|
attach("cable_signature.sage")
|
||||||
|
attach("my_signature.sage")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# TBD: read about Factory Method, variable in docstring, sage documentation
|
||||||
|
|
||||||
|
|
||||||
|
class Config(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.f_results = os.path.join(os.getcwd(), "results.out")
|
||||||
|
|
||||||
|
# knot_formula is a schema for knots which signature function
|
||||||
|
# will be calculated
|
||||||
|
self.knot_formula = "[[k[0], k[1], k[3]], " + \
|
||||||
|
"[-k[1], -k[3]], " + \
|
||||||
|
"[k[2], k[3]], " + \
|
||||||
|
"[-k[0], -k[2], -k[3]]]"
|
||||||
|
|
||||||
|
# self.knot_formula = "[[k[0], k[1], k[4]], [-k[1], -k[3]], \
|
||||||
|
# [k[2], k[3]], [-k[0], -k[2], -k[4]]]"
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# self.knot_formula = "[[k[3]], [-k[3]], \
|
||||||
|
# [k[3]], [-k[3]] ]"
|
||||||
|
#
|
||||||
|
# self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \
|
||||||
|
# [k[1], k[0]], [-k[3], -k[1], -k[0]]]"
|
||||||
|
#
|
||||||
|
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
||||||
|
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
||||||
|
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
||||||
|
# [-k[0], -k[1], -k[3]], [-k[2]]]"
|
||||||
|
self.limit = 3
|
||||||
|
|
||||||
|
# in rch for large sigma, for 1. checked knot q_1 = 3 + start_shift
|
||||||
|
self.start_shift = 0
|
||||||
|
|
||||||
|
self.verbose = True
|
||||||
|
# self.verbose = False
|
||||||
|
|
||||||
|
self.print_results = True
|
||||||
|
# self.print_results = False
|
||||||
|
|
||||||
|
# is the ratio restriction for values in q_vector taken into account
|
||||||
|
self.only_slice_candidates = True
|
||||||
|
self.only_slice_candidates = False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def main(arg=None):
|
||||||
|
try:
|
||||||
|
limit = int(arg[1])
|
||||||
|
except (IndexError, TypeError):
|
||||||
|
limit = None
|
||||||
|
|
||||||
global cable, cab_2, cab_1, joined_formula
|
global cable, cab_2, cab_1, joined_formula
|
||||||
# self.knot_formula = "[[k[0], k[1], k[3]], " + \
|
# self.knot_formula = "[[k[0], k[1], k[3]], " + \
|
||||||
# "[-k[1], -k[3]], " + \
|
# "[-k[1], -k[3]], " + \
|
||||||
@ -34,58 +93,7 @@ def main():
|
|||||||
cab_2 = TorusCable(knot_formula=knot_formula, q_vector=q_vector)
|
cab_2 = TorusCable(knot_formula=knot_formula, q_vector=q_vector)
|
||||||
cable = cab_1 + cab_2
|
cable = cab_1 + cab_2
|
||||||
joined_formula = cable.knot_formula
|
joined_formula = cable.knot_formula
|
||||||
|
print(cable.is_signature_big_for_all_metabolizers())
|
||||||
def is_big_in_ranges(cable, ranges_list):
|
|
||||||
we_have_no_problem = True
|
|
||||||
for theta in it.product(*ranges_list):
|
|
||||||
if all(i == 0 for i in theta):
|
|
||||||
continue
|
|
||||||
we_have_a_problem = True
|
|
||||||
if cable.is_metaboliser(theta):
|
|
||||||
# print("\n" * 10)
|
|
||||||
for shift in range(1, cable.q_order):
|
|
||||||
shifted_theta = [(shift * th) % cable.last_q_list[i]
|
|
||||||
for i, th in enumerate(theta)]
|
|
||||||
shifted_theta = [min(th, cable.last_q_list[i] - th)
|
|
||||||
for i, th in enumerate(shifted_theta)]
|
|
||||||
sf = cable.signature_as_function_of_theta(*shifted_theta)
|
|
||||||
extremum = abs(sf.extremum())
|
|
||||||
if shift > 1:
|
|
||||||
print(shifted_theta, end=" ")
|
|
||||||
print(extremum)
|
|
||||||
if extremum > 5 + np.count_nonzero(shifted_theta):
|
|
||||||
# print("ok")
|
|
||||||
we_have_a_problem = False
|
|
||||||
break
|
|
||||||
elif shift == 1:
|
|
||||||
print("*" * 10)
|
|
||||||
print(shifted_theta, end=" ")
|
|
||||||
print(extremum)
|
|
||||||
|
|
||||||
if we_have_a_problem:
|
|
||||||
we_have_a_big_problem = True
|
|
||||||
break
|
|
||||||
if not we_have_no_problem:
|
|
||||||
print("we have a big problem")
|
|
||||||
return we_have_no_problem
|
|
||||||
|
|
||||||
def check_all_thetas(cable):
|
|
||||||
upper_bounds = cable.last_k_list[:3]
|
|
||||||
ranges_list = [range(0, i + 1) for i in upper_bounds]
|
|
||||||
ranges_list.append(range(0, 2))
|
|
||||||
ranges_list += [range(0, 1) for _ in range(4)]
|
|
||||||
if not is_big_in_ranges(cable, ranges_list):
|
|
||||||
return False
|
|
||||||
upper_bounds = cable.last_k_list[5:8]
|
|
||||||
ranges_list = [range(0, 1) for _ in range(4)]
|
|
||||||
ranges_list += [range(0, i + 1) for i in upper_bounds]
|
|
||||||
ranges_list.append(range(0, 2))
|
|
||||||
if not is_big_in_ranges(cable, ranges_list):
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_q_vector(q_vector_size, lowest_number=1):
|
def get_q_vector(q_vector_size, lowest_number=1):
|
||||||
@ -107,6 +115,17 @@ def get_q_vector(q_vector_size, lowest_number=1):
|
|||||||
q = [P.unrank(i) for i in c]
|
q = [P.unrank(i) for i in c]
|
||||||
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
|
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
|
||||||
if not ratio:
|
if not ratio:
|
||||||
# print("Ratio-condition does not hold")
|
# print("Ratio-condition does not hold")
|
||||||
continue
|
continue
|
||||||
print("q = ", q)
|
print("q = ", q)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
global config
|
||||||
|
config = Config()
|
||||||
|
if '__file__' in globals():
|
||||||
|
# skiped in interactive mode as __file__ is not defined
|
||||||
|
main(sys.argv)
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
# main()
|
||||||
|
@ -1,12 +1,6 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
|
|
||||||
# TBD: read about Factory Method, variable in docstring, sage documentation
|
|
||||||
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import itertools as it
|
|
||||||
import re
|
|
||||||
|
|
||||||
# if not os.path.isfile('cable_signature.py'):
|
# if not os.path.isfile('cable_signature.py'):
|
||||||
# os.system('sage --preparse cable_signature.sage')
|
# os.system('sage --preparse cable_signature.sage')
|
||||||
@ -14,97 +8,11 @@ import re
|
|||||||
# from cable_signature import SignatureFunction, TorusCable, SIGNATURE, SIGMA
|
# from cable_signature import SignatureFunction, TorusCable, SIGNATURE, SIGMA
|
||||||
|
|
||||||
|
|
||||||
class Config(object):
|
|
||||||
def __init__(self):
|
|
||||||
self.f_results = os.path.join(os.getcwd(), "results.out")
|
|
||||||
|
|
||||||
# knot_formula is a schema for knots which signature function
|
# searching for signature > 5 + #(v_i != 0) over given knot schema
|
||||||
# will be calculated
|
def search_for_large_signature_value(knot_formula=None, limit=None,
|
||||||
self.knot_formula = "[[k[0], k[1], k[3]], " + \
|
verbose=None, print_results=None):
|
||||||
"[-k[1], -k[3]], " + \
|
|
||||||
"[k[2], k[3]], " + \
|
|
||||||
"[-k[0], -k[2], -k[3]]]"
|
|
||||||
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[0], k[1], k[4]], [-k[1], -k[3]], \
|
|
||||||
# [k[2], k[3]], [-k[0], -k[2], -k[4]]]"
|
|
||||||
#
|
|
||||||
#
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[3]], [-k[3]], \
|
|
||||||
# [k[3]], [-k[3]] ]"
|
|
||||||
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \
|
|
||||||
# [k[1], k[0]], [-k[3], -k[1], -k[0]]]"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
|
||||||
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
|
||||||
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
|
||||||
# [-k[0], -k[1], -k[3]], [-k[2]]]"
|
|
||||||
self.limit = 3
|
|
||||||
|
|
||||||
# in rch for large sigma, for 1. checked knot q_1 = 3 + start_shift
|
|
||||||
self.start_shift = 0
|
|
||||||
|
|
||||||
self.verbose = True
|
|
||||||
# self.verbose = False
|
|
||||||
|
|
||||||
self.print_results = True
|
|
||||||
# self.print_results = False
|
|
||||||
|
|
||||||
self.print_calculations_for_large_sigma = True
|
|
||||||
self.print_calculations_for_large_sigma = False
|
|
||||||
|
|
||||||
# is the ratio restriction for values in q_vector taken into account
|
|
||||||
self.only_slice_candidates = True
|
|
||||||
self.only_slice_candidates = False
|
|
||||||
|
|
||||||
|
|
||||||
# range for a_i, v = [a_1, a_2, a_3, a_4], for sigma calculations
|
|
||||||
# upper bound supposed to be ub = k + 1
|
|
||||||
def get_list_of_ranges(self, ub):
|
|
||||||
list_of_ranges = [
|
|
||||||
# all characters a_1, a_2, a_3, a_4 != 0
|
|
||||||
it.product(range(1, ub), range(1, ub), range(1, ub), range(1, 2)),
|
|
||||||
|
|
||||||
# a_1 == 0, a_2, a_3, a_4 != 0
|
|
||||||
it.product(range(1), range(1, ub), range(1, ub), range(1, 2)),
|
|
||||||
# a_2 == 0, a_1, a_3, a_4 != 0
|
|
||||||
it.product(range(1, ub), range(1), range(1, ub), range(1, 2)),
|
|
||||||
# a_3 == 0, a_1, a_2, a_4 != 0
|
|
||||||
it.product(range(1, ub), range(1, ub), range(1), range(1, 2)),
|
|
||||||
# a_4 == 0, a_1, a_2, a_3 != 0
|
|
||||||
it.product(range(1, ub), range(1, ub), range(1, 2), range(1)),
|
|
||||||
|
|
||||||
# a_1 == 0, a_2 == 0, a_3, a_4 != 0
|
|
||||||
it.product(range(1), range(1), range(1, ub), range(1, 2)),
|
|
||||||
# a_1 == 0, a_3 == 0, a_2, a_4 != 0
|
|
||||||
it.product(range(1), range(1, ub), range(1), range(1, 2)),
|
|
||||||
# a_1 == 0, a_4 == 0, a_3, a_2 != 0
|
|
||||||
it.product(range(1), range(1, ub), range(1, 2), range(1)),
|
|
||||||
# a_2 == 0, a_3 == 0, a_1, a_4 != 0
|
|
||||||
it.product(range(1, ub), range(1), range(1), range(1, 2)),
|
|
||||||
# a_2 == 0, a_4 == 0, a_1, a_3 != 0
|
|
||||||
it.product(range(1, ub), range(1), range(1, 2), range(1)),
|
|
||||||
# a_3 == 0, a_4 == 0, a_1, a_2 != 0
|
|
||||||
it.product(range(1, ub), range(1, 2), range(1), range(1)),
|
|
||||||
]
|
|
||||||
return list_of_ranges
|
|
||||||
|
|
||||||
|
|
||||||
def main(arg):
|
|
||||||
try:
|
|
||||||
limit = int(arg[1])
|
|
||||||
except IndexError:
|
|
||||||
limit = None
|
|
||||||
search_for_large_signature_value(limit=limit)
|
|
||||||
knots_with_large_sigma = search_for_large_sigma_value(limit=limit)
|
|
||||||
# search_for_null_signature_value(limit=limit)
|
|
||||||
|
|
||||||
def set_parameters(knot_formula, limit, verbose, print_results):
|
|
||||||
if limit is None:
|
if limit is None:
|
||||||
limit = config.limit
|
limit = config.limit
|
||||||
if knot_formula is None:
|
if knot_formula is None:
|
||||||
@ -113,92 +21,6 @@ def set_parameters(knot_formula, limit, verbose, print_results):
|
|||||||
verbose = config.verbose
|
verbose = config.verbose
|
||||||
if print_results is None:
|
if print_results is None:
|
||||||
print_results = config.print_results
|
print_results = config.print_results
|
||||||
return knot_formula, limit, verbose, print_results
|
|
||||||
|
|
||||||
|
|
||||||
# searching for sigma > 5 + #(v_i != 0) over given knot schema
|
|
||||||
def search_for_large_sigma_value(knot_formula=None, limit=None,
|
|
||||||
verbose=None, print_results=None):
|
|
||||||
|
|
||||||
knot_formula, limit, verbose, print_results = \
|
|
||||||
set_parameters(knot_formula, limit, verbose, print_results)
|
|
||||||
|
|
||||||
k_vector_size = extract_max(knot_formula) + 1
|
|
||||||
limit = max(limit, k_vector_size)
|
|
||||||
|
|
||||||
# number of k_i (q_i) variables to substitute
|
|
||||||
combinations = it.combinations(range(1, limit + 1), k_vector_size)
|
|
||||||
P = Primes()
|
|
||||||
good_knots = []
|
|
||||||
|
|
||||||
# iterate over q-vector
|
|
||||||
for c in combinations:
|
|
||||||
q = [P.unrank(i + config.start_shift) for i in c]
|
|
||||||
if config.only_slice_candidates:
|
|
||||||
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
|
|
||||||
if not ratio:
|
|
||||||
if verbose:
|
|
||||||
print("Ratio-condition does not hold")
|
|
||||||
continue
|
|
||||||
cable = TorusCable(knot_formula=knot_formula, q_vector=q)
|
|
||||||
list_of_ranges = config.get_list_of_ranges(cable.q_order)
|
|
||||||
if cable.eval_cable_for_large_values(list_of_ranges, SIGMA,
|
|
||||||
verbose=verbose,
|
|
||||||
print_results=print_results):
|
|
||||||
good_knots.append(cable.knot_description)
|
|
||||||
return good_knots
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# searching for signature == 0
|
|
||||||
def search_for_null_signature_value(knot_formula=None, limit=None,
|
|
||||||
verbose=None, print_results=None):
|
|
||||||
|
|
||||||
knot_formula, limit, verbose, print_results = \
|
|
||||||
set_parameters(knot_formula, limit, verbose, print_results)
|
|
||||||
|
|
||||||
k_vector_size = extract_max(knot_formula) + 1
|
|
||||||
limit = max(limit, k_vector_size)
|
|
||||||
|
|
||||||
combinations = it.combinations_with_replacement(range(1, limit + 1),
|
|
||||||
k_vector_size)
|
|
||||||
with open(config.f_results, 'w') as f_results:
|
|
||||||
for k in combinations:
|
|
||||||
if config.only_slice_candidates and k_vector_size == 5:
|
|
||||||
k = get_shifted_combination(k)
|
|
||||||
cable = TorusCable(knot_formula, k_vector=k)
|
|
||||||
if is_trivial_combination(cable.knot_sum):
|
|
||||||
print(cable.knot_sum)
|
|
||||||
continue
|
|
||||||
|
|
||||||
result = cable.eval_cable_for_null_signature(verbose=verbose,
|
|
||||||
print_results=print_results)
|
|
||||||
|
|
||||||
if result is not None:
|
|
||||||
null_comb, all_comb = result
|
|
||||||
line = (str(k) + ", " + str(null_comb) + ", " +
|
|
||||||
str(all_comb) + "\n")
|
|
||||||
f_results.write(line)
|
|
||||||
|
|
||||||
def check_one_cable(cable, sigma_or_sign=None,
|
|
||||||
verbose=None, print_results=None):
|
|
||||||
if sigma_or_sign is None:
|
|
||||||
sigma_or_sign = SIGNATURE
|
|
||||||
if verbose is None:
|
|
||||||
verbos = config.verbose
|
|
||||||
if print_results is None:
|
|
||||||
print_results = config.print_results
|
|
||||||
list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1])
|
|
||||||
return cable.eval_cable_for_large_values(list_of_ranges, sigma_or_sign,
|
|
||||||
verbose=verbose,
|
|
||||||
print_results=print_results)
|
|
||||||
|
|
||||||
# searching for signature > 5 + #(v_i != 0) over given knot schema
|
|
||||||
def search_for_large_signature_value(knot_formula=None, limit=None,
|
|
||||||
verbose=None, print_results=None):
|
|
||||||
|
|
||||||
knot_formula, limit, verbose, print_results = \
|
|
||||||
set_parameters(knot_formula, limit, verbose, print_results)
|
|
||||||
|
|
||||||
k_vector_size = extract_max(knot_formula) + 1
|
k_vector_size = extract_max(knot_formula) + 1
|
||||||
combinations = it.combinations(range(1, limit + 1), k_vector_size)
|
combinations = it.combinations(range(1, limit + 1), k_vector_size)
|
||||||
@ -215,74 +37,20 @@ def search_for_large_signature_value(knot_formula=None, limit=None,
|
|||||||
print("Ratio-condition does not hold")
|
print("Ratio-condition does not hold")
|
||||||
continue
|
continue
|
||||||
cable = TorusCable(knot_formula=knot_formula, q_vector=q)
|
cable = TorusCable(knot_formula=knot_formula, q_vector=q)
|
||||||
list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1])
|
is_big = cable.is_signature_big_for_all_metabolizers()
|
||||||
if cable.eval_cable_for_large_values(list_of_ranges, SIGNATURE,
|
print(is_big)
|
||||||
verbose=verbose,
|
if is_big:
|
||||||
print_results=print_results):
|
|
||||||
good_knots.append(cable.knot_description)
|
good_knots.append(cable.knot_description)
|
||||||
|
|
||||||
return good_knots
|
return good_knots
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_shifted_combination(combination):
|
|
||||||
# for now applicable only for schama
|
|
||||||
# "[[k[0], k[1], k[2]], [k[3], k[4]],
|
|
||||||
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
|
||||||
# shift the combination so that the knot can be a candidate for slice
|
|
||||||
combination = [combination[0], 4 * combination[0] + combination[1],
|
|
||||||
4 * (4 * combination[0] + combination[1]) + combination[2],
|
|
||||||
4 * combination[0] + combination[3],
|
|
||||||
4 * (4 * combination[0] + combination[3]) + combination[4]]
|
|
||||||
return combination
|
|
||||||
|
|
||||||
|
|
||||||
def extract_max(string):
|
def extract_max(string):
|
||||||
numbers = re.findall(r'\d+', string)
|
numbers = re.findall(r'\d+', string)
|
||||||
numbers = map(int, numbers)
|
numbers = map(int, numbers)
|
||||||
return max(numbers)
|
return max(numbers)
|
||||||
|
|
||||||
|
|
||||||
def is_trivial_combination(knot_sum):
|
|
||||||
# for now is applicable only for schema that are sums of 4 cables
|
|
||||||
if len(knot_sum) == 4:
|
|
||||||
oposit_to_first = [-k for k in knot_sum[0]]
|
|
||||||
if oposit_to_first in knot_sum:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
search_for_null_signature_value.__doc__ = \
|
|
||||||
"""
|
|
||||||
This function calculates signature functions for knots constracted
|
|
||||||
accordinga a schema for a cable sum. The schema is given as an argument
|
|
||||||
or defined in the class Config.
|
|
||||||
Results of calculations will be writen to a file and the stdout.
|
|
||||||
limit is the upper bound for the first value in k_vector,
|
|
||||||
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
|
|
||||||
|
|
||||||
(the number of knots that will be constracted depends on limit value).
|
|
||||||
For each knot/cable sum the function eval_cable_for_null_signature
|
|
||||||
is called.
|
|
||||||
eval_cable_for_null_signature calculetes the number of all possible thetas
|
|
||||||
(characters) and the number of combinations for which signature function
|
|
||||||
equeles zero. In case the first number is larger than squere of the second,
|
|
||||||
eval_cable_for_null_signature returns None (i.e. the knot can not be slice).
|
|
||||||
Data for knots that are candidates for slice knots are saved to a file.
|
|
||||||
"""
|
|
||||||
|
|
||||||
main.__doc__ = \
|
|
||||||
"""
|
|
||||||
This function is run if the script was called from the terminal.
|
|
||||||
It calls another function, search_for_null_signature_value,
|
|
||||||
to calculate signature functions for a schema
|
|
||||||
of a cable sum defined in the class Config.
|
|
||||||
Optionaly a parameter (a limit for k_0 value) can be given.
|
|
||||||
Thought to be run for time consuming calculations.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
extract_max.__doc__ = \
|
extract_max.__doc__ = \
|
||||||
"""
|
"""
|
||||||
Return:
|
Return:
|
||||||
@ -294,14 +62,6 @@ extract_max.__doc__ = \
|
|||||||
3300
|
3300
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
global config
|
|
||||||
config = Config()
|
|
||||||
if '__file__' in globals():
|
|
||||||
# skiped in interactive mode as __file__ is not defined
|
|
||||||
main(sys.argv)
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This script calculates signature functions for knots (cable sums).
|
This script calculates signature functions for knots (cable sums).
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user