after fixing bag with dictionary in init of SignatureFunction
This commit is contained in:
parent
8de3742c8d
commit
b729a4eeee
@ -14,11 +14,16 @@ class SignatureFunction(object):
|
|||||||
def __init__(self, values=None, counter=None):
|
def __init__(self, values=None, counter=None):
|
||||||
# set values of signature jumps
|
# set values of signature jumps
|
||||||
if counter is None:
|
if counter is None:
|
||||||
|
counter = collections.Counter()
|
||||||
|
|
||||||
if values is None:
|
if values is None:
|
||||||
values = []
|
values = []
|
||||||
assert all(x < 1 for x, y in values),\
|
|
||||||
"Signature function is defined on the interval [0, 1)."
|
msg = "Signature function is defined on the interval [0, 1)."
|
||||||
counter = collections.Counter(dict(values))
|
assert all(k < 1 for k, v in values), msg
|
||||||
|
|
||||||
|
for k, v in values:
|
||||||
|
counter[k] += v
|
||||||
self.cnt_signature_jumps = counter
|
self.cnt_signature_jumps = counter
|
||||||
|
|
||||||
def sum_of_absolute_values(self):
|
def sum_of_absolute_values(self):
|
||||||
@ -31,6 +36,7 @@ class SignatureFunction(object):
|
|||||||
# to read values for t^2
|
# to read values for t^2
|
||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||||
|
if jump != 0:
|
||||||
new_data.append((jump_arg/2, jump))
|
new_data.append((jump_arg/2, jump))
|
||||||
new_data.append((1/2 + jump_arg/2, jump))
|
new_data.append((1/2 + jump_arg/2, jump))
|
||||||
return SignatureFunction(values=new_data)
|
return SignatureFunction(values=new_data)
|
||||||
@ -39,7 +45,7 @@ class SignatureFunction(object):
|
|||||||
# to read values for t^(1/2)
|
# to read values for t^(1/2)
|
||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||||
if jump_arg < 1/2:
|
if jump_arg < 1/2 and jump != 0:
|
||||||
new_data.append((2 * jump_arg, jump))
|
new_data.append((2 * jump_arg, jump))
|
||||||
return SignatureFunction(values=new_data)
|
return SignatureFunction(values=new_data)
|
||||||
|
|
||||||
@ -47,16 +53,22 @@ class SignatureFunction(object):
|
|||||||
# to read values for t^(1/2)
|
# to read values for t^(1/2)
|
||||||
counter = collections.Counter()
|
counter = collections.Counter()
|
||||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||||
if jump_arg >= 1/2:
|
if jump_arg >= 1/2 and jump != 0:
|
||||||
counter[mod_one(2 * jump_arg)] = jump
|
counter[mod_one(2 * jump_arg)] = jump
|
||||||
return SignatureFunction(counter=counter)
|
return SignatureFunction(counter=counter)
|
||||||
|
|
||||||
def is_big(self):
|
def is_big(self):
|
||||||
max = 0
|
max = 0
|
||||||
items = self.cnt_signature_jumps.items()
|
current = 0
|
||||||
for arg, _ in items:
|
items = sorted(self.cnt_signature_jumps.items())
|
||||||
# current = sum([jump for jump_arg, jump in items if jump_arg <= arg])
|
for arg, jump in items:
|
||||||
current = self(arg)
|
current += 2 * jump
|
||||||
|
msg = "current = " + str(current) + ", jump = " + str(jump)
|
||||||
|
msg += "\n" + str(self(arg))
|
||||||
|
result = [jump for jump_arg, jump in self.cnt_signature_jumps.items() if jump_arg < mod_one(arg)]
|
||||||
|
msg += "\nresult = " + str(sum(result))
|
||||||
|
msg += "\narg = " + str(arg)
|
||||||
|
assert current == self(arg) + jump, msg
|
||||||
if abs(current) > abs(max):
|
if abs(current) > abs(max):
|
||||||
max = current
|
max = current
|
||||||
# if abs(max) > 9:
|
# if abs(max) > 9:
|
||||||
@ -68,7 +80,12 @@ class SignatureFunction(object):
|
|||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||||
new_data.append((mod_one(jump_arg + shift), jump))
|
new_data.append((mod_one(jump_arg + shift), jump))
|
||||||
return SignatureFunction(values=new_data)
|
sf = SignatureFunction(values=new_data)
|
||||||
|
counter = collections.Counter({mod_one(k + shift) : v \
|
||||||
|
for k,v in self.cnt_signature_jumps.items()})
|
||||||
|
assert SignatureFunction(counter=counter) == \
|
||||||
|
SignatureFunction(values=new_data)
|
||||||
|
return SignatureFunction(counter=counter)
|
||||||
|
|
||||||
def __lshift__(self, shift):
|
def __lshift__(self, shift):
|
||||||
return self.__rshift__(-shift)
|
return self.__rshift__(-shift)
|
||||||
@ -93,7 +110,8 @@ class SignatureFunction(object):
|
|||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
||||||
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())])
|
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())
|
||||||
|
if jump != 0])
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
@ -104,10 +122,9 @@ class SignatureFunction(object):
|
|||||||
def __call__(self, arg):
|
def __call__(self, arg):
|
||||||
# return the value of the signature function at the point arg, i.e.
|
# return the value of the signature function at the point arg, i.e.
|
||||||
# sum of all signature jumps that occur before arg
|
# sum of all signature jumps that occur before arg
|
||||||
arg = mod_one(arg)
|
items = self.cnt_signature_jumps.items()
|
||||||
cnt = self.cnt_signature_jumps
|
result = [jump for jump_arg, jump in items if jump_arg < mod_one(arg)]
|
||||||
before_arg = [jump for jump_arg, jump in cnt.items() if jump_arg < arg]
|
return 2 * sum(result) + self.cnt_signature_jumps[arg]
|
||||||
return 2 * sum(before_arg) + cnt[arg]
|
|
||||||
|
|
||||||
def total_sign_jump(self):
|
def total_sign_jump(self):
|
||||||
# Total signature jump is the sum of all jumps.
|
# Total signature jump is the sum of all jumps.
|
||||||
@ -267,6 +284,65 @@ class TorusCable(object):
|
|||||||
signature_as_function_of_theta_docstring
|
signature_as_function_of_theta_docstring
|
||||||
return signature_as_function_of_theta
|
return signature_as_function_of_theta
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_blanchfield_for_pattern(k_n, theta):
|
||||||
|
if theta == 0:
|
||||||
|
sf = TorusCable.get_untwisted_signature_function(k_n)
|
||||||
|
return sf.square_root() + sf.minus_square_root()
|
||||||
|
|
||||||
|
results = []
|
||||||
|
k = abs(k_n)
|
||||||
|
ksi = 1/(2 * k + 1)
|
||||||
|
|
||||||
|
counter = collections.Counter()
|
||||||
|
# print("lambda_odd, i.e. (theta + e) % 2 != 0")
|
||||||
|
for e in range(1, k + 1):
|
||||||
|
if (theta + e) % 2 != 0:
|
||||||
|
counter[e * ksi] = 1 * sgn(k_n)
|
||||||
|
counter[1 - e * ksi] = -1 * sgn(k_n)
|
||||||
|
|
||||||
|
results.append((e * ksi, 1 * sgn(k_n)))
|
||||||
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||||
|
|
||||||
|
# for example for k = 9 (q = 19) from this part we get
|
||||||
|
# for even theta
|
||||||
|
# 2/19: 1
|
||||||
|
# 4/19: 1
|
||||||
|
# 6/19: 1
|
||||||
|
# 8/19: 1
|
||||||
|
# 11/19: -1
|
||||||
|
# 13/19: -1
|
||||||
|
# 15/19: -1
|
||||||
|
# 17/19: -1
|
||||||
|
#
|
||||||
|
# for odd theta
|
||||||
|
# 1/19: 1
|
||||||
|
# 3/19: 1
|
||||||
|
# 5/19: 1
|
||||||
|
# 7/19: 1
|
||||||
|
# 9/19: 1
|
||||||
|
# 10/19: -1
|
||||||
|
# 12/19: -1
|
||||||
|
# 14/19: -1
|
||||||
|
# 16/19: -1
|
||||||
|
# 18/19: -1
|
||||||
|
|
||||||
|
# print("lambda_even")
|
||||||
|
# print("normal")
|
||||||
|
for e in range(1, theta):
|
||||||
|
if (theta + e) % 2 == 0:
|
||||||
|
results.append((e * ksi, 1 * sgn(k_n)))
|
||||||
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||||
|
# print("reversed")
|
||||||
|
for e in range(theta + 1, k + 1):
|
||||||
|
if (theta + e) % 2 == 0:
|
||||||
|
results.append((e * ksi, -1 * sgn(k_n)))
|
||||||
|
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
||||||
|
|
||||||
|
return SignatureFunction(values=results)
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_untwisted_signature_function(j):
|
def get_untwisted_signature_function(j):
|
||||||
# return the signature function of the T_{2,2k+1} torus knot
|
# return the signature function of the T_{2,2k+1} torus knot
|
||||||
@ -277,6 +353,7 @@ class TorusCable(object):
|
|||||||
for a in range(k + 1, 2 * k + 1)])
|
for a in range(k + 1, 2 * k + 1)])
|
||||||
return SignatureFunction(values=w)
|
return SignatureFunction(values=w)
|
||||||
|
|
||||||
|
|
||||||
def get_knot_descrption(self):
|
def get_knot_descrption(self):
|
||||||
description = ""
|
description = ""
|
||||||
for knot in self.knot_sum:
|
for knot in self.knot_sum:
|
||||||
@ -327,56 +404,6 @@ class TorusCable(object):
|
|||||||
get_summand_signture_function_docsting
|
get_summand_signture_function_docsting
|
||||||
return get_summand_signture_function
|
return get_summand_signture_function
|
||||||
|
|
||||||
def get_blanchfield_for_pattern(self, k_n, theta):
|
|
||||||
if theta == 0:
|
|
||||||
sf = TorusCable.get_untwisted_signature_function(k_n)
|
|
||||||
return sf.square_root() + sf.minus_square_root()
|
|
||||||
|
|
||||||
results = []
|
|
||||||
k = abs(k_n)
|
|
||||||
ksi = 1/(2 * k + 1)
|
|
||||||
|
|
||||||
# print("lambda_odd, i.e. (theta + e) % 2 != 0")
|
|
||||||
for e in range(1, k + 1):
|
|
||||||
if (theta + e) % 2 != 0:
|
|
||||||
results.append((e * ksi, 1 * sgn(k_n)))
|
|
||||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
||||||
# for example for k = 9 (q = 19) from this part we get
|
|
||||||
# for even theta
|
|
||||||
# 2/19: 1
|
|
||||||
# 4/19: 1
|
|
||||||
# 6/19: 1
|
|
||||||
# 8/19: 1
|
|
||||||
# 11/19: -1
|
|
||||||
# 13/19: -1
|
|
||||||
# 15/19: -1
|
|
||||||
# 17/19: -1
|
|
||||||
#
|
|
||||||
# for odd theta
|
|
||||||
# 1/19: 1
|
|
||||||
# 3/19: 1
|
|
||||||
# 5/19: 1
|
|
||||||
# 7/19: 1
|
|
||||||
# 9/19: 1
|
|
||||||
# 10/19: -1
|
|
||||||
# 12/19: -1
|
|
||||||
# 14/19: -1
|
|
||||||
# 16/19: -1
|
|
||||||
# 18/19: -1
|
|
||||||
|
|
||||||
# print("lambda_even")
|
|
||||||
# print("normal")
|
|
||||||
for e in range(1, theta):
|
|
||||||
if (theta + e) % 2 == 0:
|
|
||||||
results.append((e * ksi, 1 * sgn(k_n)))
|
|
||||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
||||||
# print("reversed")
|
|
||||||
for e in range(theta + 1, k + 1):
|
|
||||||
if (theta + e) % 2 == 0:
|
|
||||||
results.append((e * ksi, -1 * sgn(k_n)))
|
|
||||||
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
|
||||||
|
|
||||||
return SignatureFunction(values=results)
|
|
||||||
|
|
||||||
def get_number_of_combinations_of_theta(self):
|
def get_number_of_combinations_of_theta(self):
|
||||||
number_of_combinations = 1
|
number_of_combinations = 1
|
||||||
|
@ -23,6 +23,10 @@ class Config(object):
|
|||||||
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
|
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
|
||||||
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
|
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
|
||||||
|
|
||||||
|
# self.knot_formula = "[[k[3]], [-k[3]], \
|
||||||
|
# [k[3]], [-k[3]] ]"
|
||||||
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \
|
# self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \
|
||||||
# [k[1], k[0]], [-k[3], -k[1], -k[0]]]"
|
# [k[1], k[0]], [-k[3], -k[1], -k[0]]]"
|
||||||
|
|
||||||
@ -198,6 +202,7 @@ def search_for_large_signature_value(knot_formula=None, limit=None,
|
|||||||
# iterate over q-vector
|
# iterate over q-vector
|
||||||
for c in combinations:
|
for c in combinations:
|
||||||
q = [P.unrank(i + config.start_shift) for i in c]
|
q = [P.unrank(i + config.start_shift) for i in c]
|
||||||
|
q[3] = 79
|
||||||
if config.only_slice_candidates:
|
if config.only_slice_candidates:
|
||||||
if not (q[3] > 4 * q[2] and
|
if not (q[3] > 4 * q[2] and
|
||||||
q[2] > 4 * q[1] and
|
q[2] > 4 * q[1] and
|
||||||
|
Loading…
Reference in New Issue
Block a user