mirror of
https://github.com/marcin-szczepanski/jFuzzyLogic.git
synced 2024-12-18 16:35:27 +01:00
1055 lines
38 KiB
HTML
1055 lines
38 KiB
HTML
|
<!DOCTYPE html>
|
||
|
<html lang="en">
|
||
|
<head>
|
||
|
<meta charset="utf-8">
|
||
|
<title>jFuzzyLogic</title>
|
||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||
|
<meta name="description" content="">
|
||
|
<meta name="author" content="">
|
||
|
|
||
|
<!-- Styles -->
|
||
|
<link href="dist/css/bootstrap.css" rel="stylesheet">
|
||
|
|
||
|
<!-- hTML5 shim, for IE6-8 support of HTML5 elements -->
|
||
|
<!--[if lt IE 9]>
|
||
|
<script src="js/html5shiv.js"></script>
|
||
|
<![endif]-->
|
||
|
|
||
|
<!-- Fav and touch icons -->
|
||
|
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="ico/apple-touch-icon-144-precomposed.png">
|
||
|
<link rel="apple-touch-icon-precomposed" sizes="114x114" href="ico/apple-touch-icon-114-precomposed.png">
|
||
|
<link rel="apple-touch-icon-precomposed" sizes="72x72" href="ico/apple-touch-icon-72-precomposed.png">
|
||
|
<link rel="apple-touch-icon-precomposed" href="ico/apple-touch-icon-57-precomposed.png">
|
||
|
<link rel="shortcut icon" href="ico/favicon.png">
|
||
|
|
||
|
</head>
|
||
|
|
||
|
<body data-spy="scroll" data-target=".bs-docs-sidebar">
|
||
|
|
||
|
<!-- NAVBAR
|
||
|
================================================== -->
|
||
|
<div class="navbar-wrapper">
|
||
|
<div class="container">
|
||
|
<div class="navbar navbar-inverse navbar-static-top">
|
||
|
<div class="container">
|
||
|
<div class="navbar-header">
|
||
|
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
|
||
|
<span class="icon-bar"></span>
|
||
|
<span class="icon-bar"></span>
|
||
|
<span class="icon-bar"></span>
|
||
|
</button>
|
||
|
<a class="navbar-brand" href="#">jFuzzyLogic</a>
|
||
|
</div>
|
||
|
<div class="navbar-collapse collapse">
|
||
|
<ul class="nav navbar-nav">
|
||
|
<li><a href="index.html">Home</a></li>
|
||
|
<li class="active"><a href="manual.html">Documentation</a></li>
|
||
|
<li><a href="about.html">About</a></li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
<!-- Subhead
|
||
|
================================================== -->
|
||
|
<div class="jumbotron">
|
||
|
<h1>jFuzzyLogic</h1>
|
||
|
<p class="lead"> Documentation & a brief introduction to jFuzzylogic.</p>
|
||
|
<p>
|
||
|
<a class="btn btn-lg btn-success" href="http://sourceforge.net/projects/jfuzzylogic/files/jfuzzylogic/jFuzzyLogic.jar">Download Full</a>
|
||
|
<a class="btn btn-lg btn-success" href="http://sourceforge.net/projects/jfuzzylogic/files/jfuzzylogic/jFuzzyLogic_core.jar">Download Core</a>
|
||
|
</p>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
<!-- Docs nav
|
||
|
================================================== -->
|
||
|
<div class="row">
|
||
|
<div class="col-md-3">
|
||
|
<ul class="nav bs-sidenav">
|
||
|
<a class="list-group-item" href="#intro"> Introduction </a>
|
||
|
<a class="list-group-item" href="#commandline"> Command line</a>
|
||
|
<a class="list-group-item" href="#fcl"> Fuzzy control language</a>
|
||
|
<a class="list-group-item" href="#details"> FCL definitions</a>
|
||
|
<a class="list-group-item" href="#membership">Membership functions</a>
|
||
|
<a class="list-group-item" href="#runfcl"> Java API</a>
|
||
|
<a class="list-group-item" href="#using">Using jFuzzyLogic in projects</a>
|
||
|
<a class="list-group-item" href="#plugin">Eclipse plug-in</a>
|
||
|
<a class="list-group-item" href="#compiler">FCL compiler</a>
|
||
|
<a class="list-group-item" href="#optim">Parameter optimization</a>
|
||
|
</ul>
|
||
|
</div>
|
||
|
<div class="col-md-9" role="main">
|
||
|
|
||
|
|
||
|
<!-- Introduction
|
||
|
================================================== -->
|
||
|
<section id="about">
|
||
|
<div class="page-header">
|
||
|
<h1>1. Introduction</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
jFuzzyLogic is an open source fuzzy logic library implementing industry standards to simplify fuzzy systems developments.
|
||
|
</p>
|
||
|
jFuzzyLogic is a fuzzy logic package.
|
||
|
As you might have guessed, it is written in Java.
|
||
|
jFuzzyLogic implements Fuzzy control language (FCL) specification IEC 61131 part 7, as well as a complete library that will greatly simplify your fuzzy logic development or research work.
|
||
|
<br>
|
||
|
<br>
|
||
|
<b>Fuzzy control language:</b> For an introduction to FCL, you can read a pre-release specification <a href="pdf/iec_1131_7_cd1.pdf">here</a>.
|
||
|
<br>
|
||
|
<br>
|
||
|
<b>jFuzzyLogic:</b> For a thorough introduction to jFuzzyLogic, I highly recommend that you read our <a href="pdf/Cingolani_Alcala-Fdez_jFuzzyLogic_2013_IJCIS.pdf">paper</a>.
|
||
|
</p>
|
||
|
<br>
|
||
|
<p class="lead"> Downloading: Why two versions? </p>
|
||
|
<p>
|
||
|
For most applications, you should download the full version.
|
||
|
<br>
|
||
|
The <b>core</b> version is used mostly on mobile applications or applications where resources are limited and graphics capabilities are not required.
|
||
|
</p>
|
||
|
<br>
|
||
|
<p class="lead"> Getting the source code </p>
|
||
|
<p>
|
||
|
You can download the project from SourceForge using (CVS):
|
||
|
<pre>
|
||
|
cvs -z3 \
|
||
|
-d:pserver:anonymous@jfuzzylogic.cvs.sourceforge.net:/cvsroot/jfuzzylogic \
|
||
|
checkout \
|
||
|
-P jFuzzyLogic
|
||
|
</pre>
|
||
|
<br>
|
||
|
To build, just run <code>ant</code> from the project's folder.
|
||
|
<br>
|
||
|
<br>
|
||
|
The source code is also available in the "full" JAR file:
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
$ unzip -l jFuzzyLogic.jar | grep ".java"
|
||
|
152 11-29-2012 21:59 net/sourceforge/jFuzzyLogic/CompileCpp.java
|
||
|
11329 11-15-2013 08:17 net/sourceforge/jFuzzyLogic/FIS.java
|
||
|
31815 11-15-2013 08:17 net/sourceforge/jFuzzyLogic/FunctionBlock.java
|
||
|
5529 12-10-2012 21:07 net/sourceforge/jFuzzyLogic/Gpr.java
|
||
|
5812 11-15-2013 08:29 net/sourceforge/jFuzzyLogic/JFuzzyLogic.java
|
||
|
229 08-09-2013 11:06 net/sourceforge/jFuzzyLogic/Pcingola.java
|
||
|
437 10-15-2013 10:49 net/sourceforge/jFuzzyLogic/Zzz.java
|
||
|
1376 08-09-2013 11:54 net/sourceforge/jFuzzyLogic/defuzzifier/Defuzzifier.java
|
||
|
1034 02-04-2009 12:32 net/sourceforge/jFuzzyLogic/defuzzifier/DefuzzifierCenterOfArea.java
|
||
|
1630 11-29-2012 21:59 net/sourceforge/jFuzzyLogic/defuzzifier/DefuzzifierCenterOfGravity.java
|
||
|
...
|
||
|
</pre>
|
||
|
<br>
|
||
|
</p>
|
||
|
<br>
|
||
|
<p class="lead"> Publications & Citing </p>
|
||
|
<p>
|
||
|
If you are using jFuzzyLogic in academic environments, please cite our publications:
|
||
|
<br>
|
||
|
<br>
|
||
|
<ul>
|
||
|
<li> Cingolani, Pablo, and Jesús Alcalá-Fdez. <a href="pdf/Cingolani_Alcala-Fdez_jFuzzyLogic_2013_IJCIS.pdf"><i>"jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to the Standard for Fuzzy Control Programming"</i> </a>
|
||
|
<pre>
|
||
|
@article{cingolanijfuzzylogic,
|
||
|
title={jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to the Standard for Fuzzy Control Programming},
|
||
|
author={Cingolani, Pablo and Alcal{\'a}-Fdez, Jes{\'u}s}
|
||
|
booktitle={International Journal of Computational Intelligence Systems},
|
||
|
pages={61--75},
|
||
|
year={2013}
|
||
|
}
|
||
|
</pre>
|
||
|
<li> Cingolani, Pablo, and Jesus Alcala-Fdez. <a href="pdf/jFuzzyLogic.pdf"> <i>"jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language implementation."</i></a> Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on. IEEE, 2012.
|
||
|
<pre>
|
||
|
@inproceedings{cingolani2012jfuzzylogic,
|
||
|
title={jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language implementation},
|
||
|
author={Cingolani, Pablo and Alcala-Fdez, Jesus},
|
||
|
booktitle={Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on},
|
||
|
pages={1--8},
|
||
|
year={2012},
|
||
|
organization={IEEE}
|
||
|
}
|
||
|
</pre>
|
||
|
</ul>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Command line
|
||
|
================================================== -->
|
||
|
<section id="commandline">
|
||
|
<div class="page-header">
|
||
|
<h1>2. Command line</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
Command line options.
|
||
|
</p>
|
||
|
<p>
|
||
|
jFuzzyLogic provides several command line options that are useful for development.
|
||
|
Here we show some common usage examples.
|
||
|
<br>
|
||
|
<br>
|
||
|
Running jFuzzyLogic without any command line option will show a simple help.
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar
|
||
|
|
||
|
|
||
|
Usage: java -jar jFuzzyLogic.jar [options]
|
||
|
Options:
|
||
|
file.fcl : Load FCL file and show memebership functions.
|
||
|
-c file.fcl : Compile. Generate C++ code from FCL file (to STDOUT)
|
||
|
-e file.fcl in_1 in_2 ... in_n : Load FCL file, assign inputs i_1, i_2, ..., i_n and evaluate.
|
||
|
demo : Run a demo exmaple (tipper.fcl)
|
||
|
</pre>
|
||
|
<br>
|
||
|
A simple demo is available using the command line option <code>demo</code>.
|
||
|
It will show an animation of the <code>tipper.fcl</code> example:
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar demo
|
||
|
</pre>
|
||
|
<br>
|
||
|
Using an FCL file, jFuzzyLogic will show all memebership functions for all input and output variables.
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar myfile.fcl
|
||
|
</pre>
|
||
|
<br>
|
||
|
You can also specify input variables using the command line option <code>-e</code>, jFuzzyLogic will calculate and show the defuzzified output variables as well as the degree of support for each rule.
|
||
|
The <code>-e</code> command line option must be followed by the input variables values.
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar -e tipper.fcl 8.5 9
|
||
|
|
||
|
FUNCITON_BLOCK tipper
|
||
|
VAR_INPUT food = 8.500000
|
||
|
VAR_INPUT service = 9.000000
|
||
|
VAR_OUTPUT tip = 24.999984
|
||
|
RULE_BLOCK No1
|
||
|
Support Rule name Rule
|
||
|
0.000000 1 IF (service IS poor) OR (food IS rancid) THEN tip IS cheap;
|
||
|
0.000000 2 IF service IS good THEN tip IS average;
|
||
|
0.750000 3 IF (service IS excellent) AND (food IS delicious) THEN tip IS generous;
|
||
|
|
||
|
</pre>
|
||
|
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Fuzzy control language
|
||
|
================================================== -->
|
||
|
<section id="fcl">
|
||
|
<div class="page-header">
|
||
|
<h1>3. Fuzzy control language</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
The obvious advantages of having a standard language for fuzzy systems.
|
||
|
</p>
|
||
|
<p>
|
||
|
Fuzzy control language (FCL) is a language defined in the IEC 61131 part 7 specification.
|
||
|
<br>
|
||
|
<br>
|
||
|
<b>Note:</b> Unfortunately the FCL specification is not freely available and you have to buy the document from IEC.
|
||
|
But you can access a free copy of the pre-release version of the spec. <a href="pdf/iec_1131_7_cd1.pdf">here</a>.
|
||
|
<br>
|
||
|
<br>
|
||
|
Obviously, having a standard language to program fuzzy systems has many benefits.
|
||
|
Before FCL, each fuzzy logic library implementation had different ways to define membership functions, rules, etc.
|
||
|
Most of the time you had to learn APIs which were incompatible from one system to another.
|
||
|
Furthermore, using APIs to create systems is cumbersome and error prone.
|
||
|
<br>
|
||
|
FCL simply removes all these problems.
|
||
|
Furthermore, FCL is quite simple to learn and most people learn the basics by taking a looks at a couple of examples.
|
||
|
<br>
|
||
|
<br>
|
||
|
<b>Fuzzy control language:</b> For an introduction to FCL, please read the pre-release specification <a href="pdf/iec_1131_7_cd1.pdf">here</a>.
|
||
|
<br>
|
||
|
<br>
|
||
|
The following example is FCL code for the classic "tipper" problem.
|
||
|
The problem is how to calculate the tip in a restaurant (obviously, this is a toy example of a trivial problem. equivalent to a "hello world!" example in other programming languages):
|
||
|
<br>
|
||
|
<br>
|
||
|
You can download this file <a href="fcl/tipper.fcl">here</a>.
|
||
|
<pre>
|
||
|
/*
|
||
|
Example: A tip calculation FIS (fuzzy inference system)
|
||
|
Calculates tip based on 'service' and 'food'
|
||
|
|
||
|
Pablo Cingolani
|
||
|
*/
|
||
|
|
||
|
FUNCTION_BLOCK tipper // Block definition (there may be more than one block per file)
|
||
|
|
||
|
// Define input variables
|
||
|
VAR_INPUT
|
||
|
service : REAL;
|
||
|
food : REAL;
|
||
|
END_VAR
|
||
|
|
||
|
// Define output variable
|
||
|
VAR_OUTPUT
|
||
|
tip : REAL;
|
||
|
END_VAR
|
||
|
|
||
|
// Fuzzify input variable 'service': {'poor', 'good' , 'excellent'}
|
||
|
FUZZIFY service
|
||
|
TERM poor := (0, 1) (4, 0) ;
|
||
|
TERM good := (1, 0) (4,1) (6,1) (9,0);
|
||
|
TERM excellent := (6, 0) (9, 1);
|
||
|
END_FUZZIFY
|
||
|
|
||
|
// Fuzzify input variable 'food': { 'rancid', 'delicious' }
|
||
|
FUZZIFY food
|
||
|
TERM rancid := (0, 1) (1, 1) (3,0) ;
|
||
|
TERM delicious := (7,0) (9,1);
|
||
|
END_FUZZIFY
|
||
|
|
||
|
// Defzzzify output variable 'tip' : {'cheap', 'average', 'generous' }
|
||
|
DEFUZZIFY tip
|
||
|
TERM cheap := (0,0) (5,1) (10,0);
|
||
|
TERM average := (10,0) (15,1) (20,0);
|
||
|
TERM generous := (20,0) (25,1) (30,0);
|
||
|
METHOD : COG; // Use 'Center Of Gravity' defuzzification method
|
||
|
DEFAULT := 0; // Default value is 0 (if no rule activates defuzzifier)
|
||
|
END_DEFUZZIFY
|
||
|
|
||
|
// Inference rules
|
||
|
RULEBLOCK No1
|
||
|
AND : MIN; // Use 'min' for 'and'
|
||
|
ACT : MIN; // Use 'min' activation method
|
||
|
ACCU : MAX; // Use 'max' accumulation method
|
||
|
|
||
|
RULE 1 : IF service IS poor OR food IS rancid THEN tip IS cheap;
|
||
|
RULE 2 : IF service IS good THEN tip IS average;
|
||
|
RULE 3 : IF service IS excellent AND food IS delicious THEN tip IS generous;
|
||
|
END_RULEBLOCK
|
||
|
|
||
|
END_FUNCTION_BLOCK
|
||
|
</pre>
|
||
|
<br>
|
||
|
<br>
|
||
|
In order to run this example, you can download the FCL file <a href="fcl/tipper.fcl">tipper.fcl</a> and then run the following command:
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar tipper.fcl
|
||
|
</pre>
|
||
|
<br>
|
||
|
<br>
|
||
|
This command will parse and load the FCL code and show the membership functions (continue reading the next sub-section for more details).
|
||
|
<br>
|
||
|
<img src="images/tipper_MF.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
<p class="lead">
|
||
|
Step by step explanation
|
||
|
</p>
|
||
|
Keep in mind that FCL is defined as a 'Control language', so the main concept is a 'control block' which has some input and output variables.
|
||
|
You cannot make programs in the usual way, for instance, there is no "print" statement in FCL.
|
||
|
Furthermore, there is no implicit execution order.
|
||
|
In theory, the whole block is executed in parallel.
|
||
|
<br>
|
||
|
<br>
|
||
|
We now analyze the previously shown FCL code (<a href="fcl/tipper.fcl">tipper.fcl</a>):
|
||
|
<br>
|
||
|
<br>
|
||
|
<ul>
|
||
|
<li>First you define each <code>FUNCTION_BLOCK</code> (there may be more than one in each file)
|
||
|
<br>
|
||
|
<pre> FUNCTION_BLOCK tipper </pre>
|
||
|
<br>
|
||
|
|
||
|
<li> Then input and output variables are defined.
|
||
|
<br>
|
||
|
<b>Note:</b> Even though IEC-61131 defines several data types, the only variable type supported is <code>REAL</code>, which is the only one needed for fuzzy logic applications.
|
||
|
<br>
|
||
|
<pre>
|
||
|
VAR_INPUT
|
||
|
service : REAL;
|
||
|
food : REAL;
|
||
|
END_VAR
|
||
|
|
||
|
VAR_OUTPUT
|
||
|
tip : REAL;
|
||
|
END_VAR
|
||
|
</pre>
|
||
|
<br>
|
||
|
|
||
|
<li> Next we define how each input variable is fuzzified is defined in <code>FUZZIFY</code> block. In each block we define one or more <code>TERMs</code> (also called LinguisticTerms). Each term is composed by a name and a membership function. E.g.:
|
||
|
<br>
|
||
|
<pre>
|
||
|
FUZZIFY service
|
||
|
TERM poor := (0, 1) (4, 0) ;
|
||
|
TERM good := (1, 0) (4,1) (6,1) (9,0);
|
||
|
TERM excellent := (6, 0) (9, 1);
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<br>
|
||
|
In this lines we define how variable <code>service</code> will be fuzzified. Three terms are used, for instance term <code>poor</code> uses a piece-wise linear membership function defined by points (x0, y0) = (0, 1) and (x1, y1) = (4, 0)
|
||
|
<br>
|
||
|
<br>
|
||
|
<img src=images/service.png>
|
||
|
<br>
|
||
|
<br>
|
||
|
Similarly, we define <code>food</code> membership functions:
|
||
|
<br>
|
||
|
<pre>
|
||
|
FUZZIFY food
|
||
|
TERM rancid := (0, 1) (1, 1) (3,0) ;
|
||
|
TERM delicious := (7,0) (9,1);
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src=images/food.png>
|
||
|
<br>
|
||
|
<br>
|
||
|
<li> Output variables are defuzzified to get a 'real' output number.
|
||
|
Defuzzifiers are defined in <code>DEFUZZIFY</code> blocks.
|
||
|
Linguistic terms (or simply terms) are defined just like in <code>FUZZIFY</code> blocks.
|
||
|
<pre>
|
||
|
DEFUZZIFY tip
|
||
|
TERM cheap := (0,0) (5,1) (10,0);
|
||
|
TERM average := (10,0) (15,1) (20,0);
|
||
|
TERM generous := (20,0) (25,1) (30,0);
|
||
|
</pre>
|
||
|
<br>
|
||
|
<img src=images/tip.png>
|
||
|
<br>
|
||
|
<br>
|
||
|
<br>
|
||
|
Next, we state that 'Center of gravity' as defuzzifier method.
|
||
|
<pre> METHOD : COG; </pre>
|
||
|
|
||
|
We also use '0' as default value, i.e. the value use when no rule activates this variable.
|
||
|
|
||
|
<pre> DEFAULT := 0; </pre>
|
||
|
|
||
|
|
||
|
<li> At this point we are ready to define the rules.
|
||
|
This is done using a <code>RULEBLOCK</code>.
|
||
|
First we must define some parameters.
|
||
|
Use 'min' for 'and' (implicitly uses 'max' for 'or' to fulfill DeMorgan's Law).
|
||
|
<pre>
|
||
|
RULEBLOCK No1
|
||
|
AND : MIN;
|
||
|
</pre>
|
||
|
|
||
|
Use 'min' activation method
|
||
|
<pre> ACT : MIN; </pre>
|
||
|
|
||
|
Use 'maximum' as accumulation method.
|
||
|
<pre> ACCU : MAX; </pre>
|
||
|
|
||
|
|
||
|
And now define some fuzzy rules
|
||
|
<pre>
|
||
|
RULE 1 : IF service IS poor OR food IS rancid THEN tip IS cheap;
|
||
|
RULE 2 : IF service IS good THEN tip IS average;
|
||
|
RULE 3 : IF service IS excellent AND food IS delicious THEN tip is generous;
|
||
|
</pre>
|
||
|
|
||
|
Ok, that's it, you've got a fuzzy controller!
|
||
|
</section>
|
||
|
|
||
|
<!-- FCL definitions
|
||
|
================================================== -->
|
||
|
<section id="details">
|
||
|
<div class="page-header">
|
||
|
<h1>4. FCL definitions</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
Here we show some details on jFuzzyLogic's structure as well as some basic FCL definitions.
|
||
|
</p>
|
||
|
<p>
|
||
|
How this package works and how classes are organized is briefly explained here.<p>
|
||
|
|
||
|
<ul>
|
||
|
<li> A fuzzy inference system (<code>FIS</code>) is composed by one or more <code>FuncionBlock</code> class, like in FCL. E.g.:
|
||
|
<pre>
|
||
|
FUNCTION_BLOCK functionBlock1
|
||
|
...
|
||
|
END_FUNCTION_BLOCK
|
||
|
|
||
|
FUNCTION_BLOCK functionBlock2
|
||
|
...
|
||
|
END_FUNCTION_BLOCK
|
||
|
</pre> <p>
|
||
|
|
||
|
<li> Each <code>FuncionBlock</code> is composed by one or more <code>RuleBlock</code> class and some <code>Variables</code>, as well as <code>Fuzzyfiers</code> and <code>Defuzzifiers</code>. Again, like in FCL, e.g.:
|
||
|
<pre>
|
||
|
FUNCTION_BLOCK functionBlockName
|
||
|
VAR_INPUT
|
||
|
...
|
||
|
END_VAR
|
||
|
|
||
|
VAR_OUTPUT
|
||
|
...
|
||
|
END_VAR
|
||
|
|
||
|
FUZZIFY inputVariable
|
||
|
...
|
||
|
END_FUZZIFY
|
||
|
|
||
|
DEFUZZIFY outputVariable
|
||
|
...
|
||
|
END_DEFUZZIFY
|
||
|
|
||
|
RULEBLOCK No1
|
||
|
...
|
||
|
END_RULEBLOCK
|
||
|
|
||
|
END_FUNCTION_BLOCK
|
||
|
</pre> <p>
|
||
|
|
||
|
<li> Each <code>Rule</code> class is composed by an antecedent (<b>IF</b> part) and a consequent (<b>THEN</b> part), e.g.:<br>
|
||
|
<pre>
|
||
|
RULE 1 : IF service IS poor OR food IS rancid THEN tip IS cheap;
|
||
|
</pre>
|
||
|
<ul>
|
||
|
<li> Antecedent: <i>"service IS poor OR food IS rancid"</i>
|
||
|
<li> Consequent: <i>"tip IS cheap"</i>. Note that there may be more than one consequent.
|
||
|
<li> A rule implication (or activation) method can be defined (althought FCL does not allow different implication method for each rule, it can be defined at RULEBLOCK level).
|
||
|
e.g.: ACT : MIN; // Use 'min' activation method
|
||
|
</ul>
|
||
|
<p>
|
||
|
<li> Consequents are a 'collection' of <code>RuleTerms</code> classes (e.g. <i>"tip IS cheap"</i> is a RuleTerm)
|
||
|
<p>
|
||
|
<li> An Antecedent is represented by a <code>RuleExpression</code> class. A <code>RuleExpression</code> is just two terms connected by one <code>RuleConnectionMethod</code> (rule conectors are 'AND', 'OR' and 'NOT')<br>
|
||
|
e.g.: service IS poor OR food IS rancid <br>
|
||
|
<ul>
|
||
|
<li> First term: <i>"service IS poor"</i>
|
||
|
<li> Second term: <i>"food IS rancid"</i>
|
||
|
<li> RuleConnectionMethod is <i>'OR'</i>
|
||
|
</ul>
|
||
|
<br>
|
||
|
<b>Note:</b> Each term can be either a <code>RuleTerm</code> or a <code>RuleExpression</code>, this definition is recursive, so arbitrarily complex expressions can be created.
|
||
|
<p>
|
||
|
<li> Each <code>RuleTerm</code> is defined by a <code>Variable</code> and a <code>LinguisticTermName</code>.
|
||
|
e.g.: service IS poor
|
||
|
<ul>
|
||
|
<li> <code>Variable</code>: service
|
||
|
<li> <code>LinguisticTermName</code>: 'poor'
|
||
|
<li> Connector: 'IS'
|
||
|
</ul>
|
||
|
It can also be 'negated' e.g.: service IS NOT excellent<br>
|
||
|
<p>
|
||
|
<li> Each <code>Variable</code> has a <code>name</code> and some <code>LinguisticTerms</code>
|
||
|
e.g.: For an input variable:
|
||
|
<pre>
|
||
|
FUZZIFY service // Fuzzify input variable 'service': {'poor', 'good' , 'excellent'}
|
||
|
TERM poor := (0, 1) (4, 0) ;
|
||
|
TERM good := (1, 0) (4,1) (6,1) (9,0);
|
||
|
TERM excellent := (6, 0) (9, 1);
|
||
|
END_FUZZIFY
|
||
|
</pre><p>
|
||
|
|
||
|
e.g.: For an output variable:
|
||
|
<pre>
|
||
|
DEFUZZIFY tip // Defzzzify output variable 'tip' : {'cheap', 'average', 'generous' }
|
||
|
TERM cheap := (0,0) (5,1) (10,0);
|
||
|
TERM average := (10,0) (15,1) (20,0);
|
||
|
TERM generous := (20,0) (25,1) (30,0);
|
||
|
METHOD : COG; // Use 'Center Of Gravity' defuzzification method
|
||
|
DEFAULT := 0; // Default value is 0 (if no rule activates defuzzifier)
|
||
|
END_DEFUZZIFY
|
||
|
</pre>
|
||
|
As you can see, for an output variable you need to specify an accumulation (or <code>RuleAgrregationMethod</code>) and a <code>Defuzzifier</code>.
|
||
|
e.g.:
|
||
|
<pre>
|
||
|
ACCU : MAX; // Use 'max' accumulation method
|
||
|
METHOD : COG; // Use 'Center Of Gravity' defuzzification method
|
||
|
</pre>
|
||
|
</ul>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Membership functions
|
||
|
================================================== -->
|
||
|
<section id="membership">
|
||
|
<div class="page-header">
|
||
|
<h1>5. Membership functions</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
jFuzzyLogic provides convenient extensions to easily define membership functions.
|
||
|
</p>
|
||
|
<p>
|
||
|
Membership functions are broadly divided into two sub classes: continuous and discrete.
|
||
|
One variable can only have either continuous or discrete membership functions.
|
||
|
<br>
|
||
|
<br>
|
||
|
<p class="lead">Membership functions</p>
|
||
|
<ul>
|
||
|
<li> Triangular: <code>trian min mid max</code>
|
||
|
<pre>
|
||
|
FUZZIFY inVar2
|
||
|
TERM poor := trian 0 2.5 5;
|
||
|
TERM good := trian 2.5 5 7.5;
|
||
|
TERM excellent := trian 5 7.5 10;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar2.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Trapetzoidal: <code>trape min midLow midHigh max </code>
|
||
|
<pre>
|
||
|
FUZZIFY inVar3
|
||
|
TERM poor := trape 0 2 3 4;
|
||
|
TERM good := trape 3 4 5 6;
|
||
|
TERM excellent := trape 5 6 7 8;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar3.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Gauss: <code>gauss mean stdev </code>
|
||
|
<pre>
|
||
|
FUZZIFY inVar5
|
||
|
TERM poor := gauss 2 2;
|
||
|
TERM good := gauss 5 2;
|
||
|
TERM excellent := gauss 8 2;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar5.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Generalized bell: <code>gbell a b mean </code>
|
||
|
<pre>
|
||
|
FUZZIFY inVar4
|
||
|
TERM poor := gbell 2 4 2;
|
||
|
TERM good := gbell 2 4 5;
|
||
|
TERM excellent := gbell 2 4 8;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar4.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Sigmoidal: <code>sigm gain center </code>
|
||
|
<pre>
|
||
|
FUZZIFY inVar6
|
||
|
TERM poor := sigm -4 3;
|
||
|
TERM good := sigm 4 7;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar6.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Singleton: just one number (where singleton membership is 1)
|
||
|
<pre>
|
||
|
FUZZIFY inVar7
|
||
|
TERM poor := 2;
|
||
|
TERM good := 5;
|
||
|
TERM excellent := 8;
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar7.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
|
||
|
<li> Piece-wise linear: <code> (x_1, y_1) (x_2, y_2) .... (x_n, y_n) </code>
|
||
|
|
||
|
<pre>
|
||
|
FUZZIFY inVar1
|
||
|
TERM poor := (0,1) (2, 1) (4, 0) ;
|
||
|
TERM good := (1, 0) (2, 0.5) (3, 0.7) (4,1) (4.5, 1) (5, 0.6)
|
||
|
(6, 0.3) (7, 0.3) (8, 0.8) (9, 0.8) (10,0);
|
||
|
TERM excellent := (6, 0) (9, 1) (10,1);
|
||
|
END_FUZZIFY
|
||
|
</pre>
|
||
|
<img src="images/inVar1.png">
|
||
|
<br>
|
||
|
<br>
|
||
|
</ul>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
|
||
|
<!-- Java API
|
||
|
================================================== -->
|
||
|
<section id="runfcl">
|
||
|
<div class="page-header">
|
||
|
<h1>6. Java API</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
Running FCL code from your Java code is very easy.
|
||
|
</p>
|
||
|
<p>
|
||
|
This is a simple Java code used to load a fuzzy inference system (FIS), this code available at <code>TestTipper.java</code><p>
|
||
|
|
||
|
<pre>
|
||
|
package net.sourceforge.jFuzzyLogic.test;
|
||
|
|
||
|
import net.sourceforge.jFuzzyLogic.FIS;
|
||
|
import net.sourceforge.jFuzzyLogic.rule.FuzzyRuleSet;
|
||
|
|
||
|
/**
|
||
|
* Test parsing an FCL file
|
||
|
* @author pcingola@users.sourceforge.net
|
||
|
*/
|
||
|
public class TestTipper {
|
||
|
public static void main(String[] args) throws Exception {
|
||
|
// Load from 'FCL' file
|
||
|
String fileName = "fcl/tipper.fcl";
|
||
|
FIS fis = FIS.load(fileName,true);
|
||
|
|
||
|
// Error while loading?
|
||
|
if( fis == null ) {
|
||
|
System.err.println("Can't load file: '" + fileName + "'");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Show
|
||
|
JFuzzyChart.get().chart(functionBlock);
|
||
|
|
||
|
// Set inputs
|
||
|
fis.setVariable("service", 3);
|
||
|
fis.setVariable("food", 7);
|
||
|
|
||
|
// Evaluate
|
||
|
fis.evaluate();
|
||
|
|
||
|
// Show output variable's chart
|
||
|
Variable tip = functionBlock.getVariable("tip");
|
||
|
JFuzzyChart.get().chart(tip, tip.getDefuzzifier(), true);
|
||
|
|
||
|
// Print ruleSet
|
||
|
System.out.println(fis);
|
||
|
}
|
||
|
}
|
||
|
</pre>
|
||
|
<br>
|
||
|
<br>
|
||
|
The code is pretty straightforward, but let's go over the main points.
|
||
|
<br>
|
||
|
<br>
|
||
|
<ul>
|
||
|
<li>
|
||
|
<b>FIS</b> stands for Fuzzy Inference System and it is how the IEC norm refers to whatever you put in an FCL file.
|
||
|
So in order to load an FCL file, we use <code>FIS.load(fileName)</code> function.
|
||
|
<br>
|
||
|
<pre>
|
||
|
String fileName = "fcl/tipper.fcl";
|
||
|
FIS fis = FIS.load(fileName,true);
|
||
|
</pre>
|
||
|
|
||
|
<li> If an error is detected when loading or parsing the FCL file <code>FIS.load()</code> returns <code>null</code>.
|
||
|
<pre>
|
||
|
if( fis == null ) { // Error while loading?
|
||
|
System.err.println("Can't load file: '" + fileName + "'");
|
||
|
return;
|
||
|
}
|
||
|
</pre>
|
||
|
|
||
|
<li> Now we can plot all variables in the FIZ (each LinguisticTerm in each Variable in the FUNCTION_BLOCK).
|
||
|
This might be useful when you are debugging your code.
|
||
|
|
||
|
<pre>
|
||
|
JFuzzyChart.get().chart(functionBlock);
|
||
|
</pre>
|
||
|
And we get the following images:<p>
|
||
|
<center>
|
||
|
<img src=images/service.png><p>
|
||
|
<img src=images/food.png><p>
|
||
|
<img src=images/tip.png><p>
|
||
|
</center>
|
||
|
|
||
|
<li> In order to make actual calculations and run the FIS, we must setting the input variables
|
||
|
<pre>
|
||
|
fis.setVariable("service", 3);
|
||
|
fis.setVariable("food", 7);
|
||
|
</pre>
|
||
|
|
||
|
<li> Now we can run the system
|
||
|
<pre>
|
||
|
fis.evaluate();
|
||
|
</pre>
|
||
|
|
||
|
<li> If we want to know the system's output we can read the output variable's values (in this case there's only one output variable 'tip')
|
||
|
<pre>
|
||
|
Variable tip = functionBlock.getVariable("tip");
|
||
|
JFuzzyChart.get().chart(tip, tip.getDefuzzifier(), true);
|
||
|
</pre>
|
||
|
|
||
|
<li> We can also plot output's defuzzifier
|
||
|
<pre>
|
||
|
fis.getVariable("tip").chartDefuzzifier(true);
|
||
|
</pre>
|
||
|
<center> <img src=images/tip_out.png><br> </center>
|
||
|
|
||
|
<li> And, of course, we can print the FIS
|
||
|
<pre>
|
||
|
System.out.println(fis);
|
||
|
</pre>
|
||
|
</ul>
|
||
|
|
||
|
<br>
|
||
|
<p class="lead"> Obtaining the system's output </p>
|
||
|
After Fis.evaluate() you can access the system's output variables using <code>fis.getVariable("variableName")</code>.
|
||
|
Here is a simple code snippet from <code>TestTipper.java</code> example (slightly modified):
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
public class TestTipper {
|
||
|
public static void main(String[] args) throws Exception {
|
||
|
FIS fis = FIS.load("fcl/tipper.fcl", true); // Load from 'FCL' file
|
||
|
fis.setVariable("service", 3); // Set inputs
|
||
|
fis.setVariable("food", 7);
|
||
|
fis.evaluate(); // Evaluate
|
||
|
|
||
|
// Show output variable
|
||
|
System.out.println("Output value:" + fis.getVariable("tip").getValue());
|
||
|
}
|
||
|
}
|
||
|
</pre>
|
||
|
|
||
|
<br>
|
||
|
<p class="lead"> Rule usage </p>
|
||
|
In order to asses how rules are used, you just need to take a look at the rule's "degree of support" (by default is printed when you print the rule).
|
||
|
For instance here is a small example (it uses <code>tipper.fcl</code> file from the 'fcl' examples directory in the package):
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
package net.sourceforge.jFuzzyLogic;
|
||
|
import net.sourceforge.jFuzzyLogic.rule.Rule;
|
||
|
public class Zzz {
|
||
|
|
||
|
public static void main(String[] args) throws Exception {
|
||
|
FIS fis = FIS.load("fcl/tipper.fcl", true); // Load from 'FCL' file
|
||
|
fis.setVariable("service", 3); // Set inputs
|
||
|
fis.setVariable("food", 7);
|
||
|
fis.evaluate(); // Evaluate
|
||
|
System.out.println("Output value:" + fis.getVariable("tip").getValue()); // Show output variable
|
||
|
|
||
|
// Show each rule (and degree of support)
|
||
|
for( Rule r : fis.getFunctionBlock("tipper").getFuzzyRuleBlock("No1").getRules() )
|
||
|
System.out.println(r);
|
||
|
}
|
||
|
}
|
||
|
</pre>
|
||
|
<br>
|
||
|
The output is:
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
Output value:11.701603788948043
|
||
|
1 (0.25) if (service IS poor) OR (food IS rancid) then tip IS cheap [weight: 1.0]
|
||
|
2 (0.6666666666666666) if service IS good then tip IS average [weight: 1.0]
|
||
|
3 (0.0) if (service IS excellent) AND (food IS delicious) then tip IS generous [weight: 1.0]
|
||
|
</pre>
|
||
|
<br>
|
||
|
which shows the degree of support for each rule (0.25, 0.666666 and 0)
|
||
|
|
||
|
<br>
|
||
|
<br>
|
||
|
<p class="lead"> Adding rules programatically </p>
|
||
|
First of all, I have to tell you that hard-coding the rules is highly discouraged (pretty much like hard-coding values).
|
||
|
If you absolutely must do it for whatever reason, here is an example on how to do it:<p>
|
||
|
|
||
|
<pre>
|
||
|
// RULE 3 : IF ((service IS good) OR (service IS excellent)) AND food IS delicious THEN tip is generous;
|
||
|
Rule rule3 = new Rule("Rule3", ruleBlock);
|
||
|
|
||
|
RuleTerm term1 = new RuleTerm(service, "good", false);
|
||
|
RuleTerm term2 = new RuleTerm(service, "excellent", false);
|
||
|
RuleTerm term3 = new RuleTerm(food, "delicious", false);
|
||
|
|
||
|
RuleExpression antecedentOr = new RuleExpression(term1, term2, new RuleConnectionMethodOrMax());
|
||
|
RuleExpression antecedentAnd = new RuleExpression(antecedentOr, term3, new RuleConnectionMethodAndMin());
|
||
|
|
||
|
rule3.setAntecedents(antecedentAnd);
|
||
|
rule3.addConsequent(tip, "generous", false);
|
||
|
ruleBlock.add(rule3);
|
||
|
</pre>
|
||
|
|
||
|
Remember that a rule antecedent is just a RuleExpression.
|
||
|
A RuleExpression can be either a combination of RuleExpressions or RuleTerms.
|
||
|
In this case, you'll have to use two RuleExpressions combined by a RuleConnectionMethodAndMin, i.e.:
|
||
|
<br>
|
||
|
<br>
|
||
|
<pre>
|
||
|
IF (var1 IS low) AND ( (var2 IS medium) AND (var3 IS high) ) THEN ....
|
||
|
</pre>
|
||
|
<br>
|
||
|
This is because 'AND' accepts only 2 terms (all RuleExpressions accept one only or 2 terms).
|
||
|
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Eclipse project
|
||
|
================================================== -->
|
||
|
<section id="using">
|
||
|
<div class="page-header">
|
||
|
<h1>7. Using jFuzzyLogic in projects</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
This section shows how to add jFuzzyLogic as a library in your Java projects.
|
||
|
</p>
|
||
|
<p>
|
||
|
In order to use jFuzzyLogic in your projects, you must add <code>jFuzzyLogic.jar</code> as one of your JAR files (libraries).
|
||
|
This is done like you'd do it with any other JAR file.
|
||
|
Since this is a basic Java programming skill, so I won't get into many details.
|
||
|
<br>
|
||
|
<br>
|
||
|
<b>Full example project:</b> <a href="http://sourceforge.net/projects/jfuzzylogic/files/jfuzzylogic/jFuzzyLogicProjectExample.zip">Here</a>, you can download a ZIP file with a sample Eclipse project that uses jFuzzyLogic.
|
||
|
<br>
|
||
|
<br>
|
||
|
This video shows how to create a Java project that uses jFuzzyLogic using the Eclipse IDE.
|
||
|
<br>
|
||
|
<b>Note:</b> The Java code is copied from <code>TestTipper.java</code> and the FCL code is from <code>tipper.fcl</code> file.<p>
|
||
|
<br>
|
||
|
<br>
|
||
|
<embed src="./videos/jFuzzyProject_example.swf" width=1183 height=770>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Eclipse plugin
|
||
|
================================================== -->
|
||
|
<section id="plugin">
|
||
|
<div class="page-header">
|
||
|
<h1>8. Eclipse plugin</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
We provide a convenient Eclipse plug-in to help developing FCL programs.
|
||
|
</p>
|
||
|
<p>
|
||
|
The Eclipse plug-in for FCL files provides some interesting features: syntax coloring, auto-completion, outline, quick outline, etc.
|
||
|
Some features shown in this image (click to enlarge)<p>
|
||
|
|
||
|
Eclipse plug-in install instructions:
|
||
|
<ul>
|
||
|
<li> Open Eclipse
|
||
|
<li> Click on the menu <code>Help -> Install new software</code> you'll see the software update window
|
||
|
<li> Click on <code>Add</code><br>
|
||
|
<li> Name: <code>jFuzzyLogicUpdateSite</code> <br>
|
||
|
<li> Location: <code>http://jfuzzylogic.sourceforge.net/eclipse/</code><br>
|
||
|
<li> Click OK an follow the instructions.<br>
|
||
|
</ul>
|
||
|
<a href="images/plugin_install.png"> <img width="50%" src="images/plugin_install.png"> </a>
|
||
|
<br>
|
||
|
<br>
|
||
|
<b> Notes: </b>
|
||
|
<ul>
|
||
|
<li> Some required dependencies will also be intalled (Xtext)<br>
|
||
|
<li> You will have to restart eclipse after installing this plugin<br>
|
||
|
</ul>
|
||
|
<br>
|
||
|
<br>
|
||
|
<p class="lead">Eclipse plug-in feature examples</p>
|
||
|
Syntax coloring, outline (click to enlarge)
|
||
|
<br>
|
||
|
<br>
|
||
|
<a href="images/plugin_edit.png"> <img width="50%" src="images/plugin_edit.png"> </a>
|
||
|
<br>
|
||
|
<br>
|
||
|
You can also view the membership functions by "Running" the FCL file (see next image, click to enlarge)
|
||
|
<br>
|
||
|
<br>
|
||
|
<a href="images/plugin_run.png"> <img width="50%" src="images/plugin_run.png"> </a>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- FCL compiler
|
||
|
================================================== -->
|
||
|
<section id="compiler">
|
||
|
<div class="page-header">
|
||
|
<h1>9. FCL compiler</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
jFuzzyLogic can compile FCL into C++ code.
|
||
|
</p>
|
||
|
<p>
|
||
|
A built in compiler allows to compiler FCL code into C++.
|
||
|
For instance, by simply running the following command, we can create a C++ program that has the same functionality as the FCL program:
|
||
|
<pre>
|
||
|
java -jar jFuzzyLogic.jar -c tipper.fcl > tipper.cpp
|
||
|
</pre>
|
||
|
|
||
|
The previous command creates <a href="fcl/tipper.cpp">this C++ code</a>.
|
||
|
<br>
|
||
|
<br>
|
||
|
<img src="images/cpp.png">
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
<!-- Parameter optimization
|
||
|
================================================== -->
|
||
|
<section id="optim">
|
||
|
<div class="page-header">
|
||
|
<h1>10. Parameter optimization</h1>
|
||
|
</div>
|
||
|
<p class="lead">
|
||
|
jFuzzyLogic provides a parameter optimization framework, allowing to learn or refine fuzzy parameters using machine learning algorithms.
|
||
|
</p>
|
||
|
The parameter optimization framework requires to define a learning method which can be applied to a dataset in order to refine fuzzy membership parameters.
|
||
|
<br>
|
||
|
<br>
|
||
|
In this Java code example, we optimize fuzzy sets' parameters and fuzzy rule's weights:
|
||
|
<pre>
|
||
|
//---
|
||
|
// Load FIS (Fuzzy Inference System)
|
||
|
//---
|
||
|
FIS fis = FIS.load("fcl/qualify.fcl");
|
||
|
RuleBlock ruleBlock = fis.getFunctionBlock().getRuleBlock();
|
||
|
|
||
|
//---
|
||
|
// Create a list of parameter to optimize
|
||
|
//---
|
||
|
ArrayList<Parameter> parameterList = new ArrayList<Parameter>();
|
||
|
|
||
|
// Add variables.
|
||
|
// Note: Fuzzy sets' parameters for these
|
||
|
// variables will be optimized
|
||
|
Parameter.parameterListAddVariable(parameterList
|
||
|
, fis.getVariable("scoring"));
|
||
|
Parameter.parameterListAddVariable(parameterList
|
||
|
, fis.getVariable("credLimMul"));
|
||
|
|
||
|
// Add every rule's weight
|
||
|
for( Rule rule = ruleBlock )
|
||
|
Parameter.parameterListAddRule(parameterList, rule);
|
||
|
|
||
|
//---
|
||
|
// Create an error function to be
|
||
|
// optimzed (i.e. minimized)
|
||
|
//---
|
||
|
ErrorFunctionQualify errorFunction = new ErrorFunctionQualify();
|
||
|
|
||
|
//---
|
||
|
// Optimize (using 'Delta jump optimization')
|
||
|
//---
|
||
|
OptimizationDeltaJump optimizationDeltaJump =
|
||
|
new OptimizationDeltaJump(ruleBlock
|
||
|
, errorFunction, parameterList);
|
||
|
|
||
|
// Number optimization of iterations
|
||
|
optimizationDeltaJump.setMaxIterations(20);
|
||
|
|
||
|
optimizationDeltaJump.optimize(true);
|
||
|
</pre>
|
||
|
<br>
|
||
|
<br>
|
||
|
The error function (<code>ErrorFunctionQualify</code>) can be just any error function, the structure for the code should be like this:
|
||
|
<pre>
|
||
|
public class ErrorFunctionQualify extends ErrorFunction {
|
||
|
public double evaluate(RuleBlock ruleBlock) {
|
||
|
double error;
|
||
|
// Calculate your desired error here...
|
||
|
return error;
|
||
|
}
|
||
|
}
|
||
|
</pre>
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
<!-- Footer
|
||
|
================================================== -->
|
||
|
<footer>
|
||
|
<p class="text-center">© <a class="body" href="http://www.linkedin.com/in/pablocingolani">Pablo Cingolani 2013</a></p>
|
||
|
</footer>
|
||
|
</body>
|
||
|
</html>
|