Lab 4
This commit is contained in:
parent
116aa493ce
commit
ef8708b144
@ -26,33 +26,30 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Model():\n",
|
||||
" \n",
|
||||
" def __init__(self, vocab_size=30_000, UNK_token= '<UNK>'):\n",
|
||||
" def __init__(self, vocab_size=30_000, UNK_token= '<UNK>', n=2):\n",
|
||||
" # n - parametr dla \"n\"-gramów\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def train(corpus:list) -> None:\n",
|
||||
" def train(self, corpus:list) -> None:\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def get_conditional_prob_for_word(text: list, word: str) -> float:\n",
|
||||
" def get_conditional_prob_for_word(self, text: list, word: str) -> float:\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def get_prob_for_text(text: list) -> float:\n",
|
||||
" def get_prob_for_text(self, text: list) -> float:\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def most_probable_next_word(text:list) -> str:\n",
|
||||
" def most_probable_next_word(self, text:list) -> str:\n",
|
||||
" 'nie powinien zwracań nigdy <UNK>'\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def high_probable_next_word(text:list) -> str:\n",
|
||||
" 'nie powinien zwracań nigdy <UNK>'\n",
|
||||
" pass\n",
|
||||
" \n",
|
||||
" def generate_text(text_beggining:list, length: int, greedy: bool) -> list:\n",
|
||||
" def generate_text(self, text_beggining:list, length: int, greedy: bool) -> list:\n",
|
||||
" 'nie powinien zwracań nigdy <UNK>'\n",
|
||||
" pass"
|
||||
]
|
||||
@ -91,10 +88,12 @@
|
||||
"- Wymyśl 5 krótkich zdań. Dla każdego oblicz jego prawdopodobieństwo.\n",
|
||||
"- Napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla podzbiorów train i test.\n",
|
||||
"- Wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla `high_probable_next_word`, teksty były orginalne.\n",
|
||||
"- Stwórz model dla korpusu z ZADANIE 1 i policz perplexity dla każdego z tekstów (zrób split 90/10) dla train i test.\n",
|
||||
"- Stwórz model dla korpusu z ZADANIE 1 i policz perplexity dla każdego z tekstów (zrób split 9:1) dla train i test.\n",
|
||||
"\n",
|
||||
"Dodatkowo:\n",
|
||||
"- Dokonaj klasyfikacji za pomocą modelu językowego.\n",
|
||||
"- Zastosuj wygładzanie metodą Laplace'a.\n",
|
||||
"- Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji."
|
||||
" - Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji.\n",
|
||||
"- Zastosuj wygładzanie metodą Laplace'a."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user