779 lines
37 KiB
Plaintext
779 lines
37 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Uczenie maszynowe\n",
|
||
"# 13. Splotowe sieci neuronowe"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Splotowe sieci neuronowe, inaczej konwolucyjne sieci neuronowe (*convolutional neural networks*, CNN, ConvNet)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Konwolucyjne sieci neuronowe wykorzystuje się do:\n",
|
||
"\n",
|
||
"* rozpoznawania obrazu\n",
|
||
"* analizy wideo\n",
|
||
"* innych zagadnień o podobnej strukturze"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Innymi słowy, CNN przydają się, gdy mamy bardzo dużo danych wejściowych, w których istotne jest ich sąsiedztwo."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Warstwy konwolucyjne"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Dla uproszczenia przyjmijmy, że mamy dane w postaci jednowymiarowej – np. chcemy stwierdzić, czy na danym nagraniu obecny jest głos człowieka."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Nasze nagranie możemy reprezentować jako ciąg $n$ próbek dźwiękowych:\n",
|
||
"$$(x_0, x_1, \\ldots, x_n)$$\n",
|
||
"(możemy traktować je jak jednowymiarowe „piksele”)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Najprostsza metoda – „zwykła” jednowarstwowa sieć neuronowa (każdy z każdym) nie poradzi sobie zbyt dobrze w tym przypadku:\n",
|
||
"\n",
|
||
"* dużo danych wejściowych\n",
|
||
"* nie wykrywa własności „lokalnych” wejścia"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-F.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Chcielibyśmy wykrywać pewne lokalne „wzory” w danych wejściowych.\n",
|
||
"\n",
|
||
"W tym celu tworzymy mniejszą sieć neuronową (mniej neuronów wejściowych) i _kopiujemy_ ją tak, żeby każda jej kopia działała na pewnym fragmencie wejścia (fragmenty mogą nachodzić na siebie)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv3.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Warstwę sieci A nazywamy **warstwą konwolucyjną** (konwolucja = splot).\n",
|
||
"\n",
|
||
"Warstw konwolucyjnych może być więcej niż jedna."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"60%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2Conv2.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2Conv2.png\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Tak definiujemy formalnie funckję splotu dla 2 wymiarów:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\left[\\begin{array}{ccc}\n",
|
||
"a & b & c\\\\\n",
|
||
"d & e & f\\\\\n",
|
||
"g & h & i\\\\\n",
|
||
"\\end{array}\\right]\n",
|
||
"*\n",
|
||
"\\left[\\begin{array}{ccc}\n",
|
||
"1 & 2 & 3\\\\\n",
|
||
"4 & 5 & 6\\\\\n",
|
||
"7 & 8 & 9\\\\\n",
|
||
"\\end{array}\\right] \n",
|
||
"=\\\\\n",
|
||
"(1 \\cdot a)+(2 \\cdot b)+(3 \\cdot c)+(4 \\cdot d)+(5 \\cdot e)\\\\+(6 \\cdot f)+(7 \\cdot g)+(8 \\cdot h)+(9 \\cdot i)\n",
|
||
"$$\n",
|
||
"\n",
|
||
"Więcej: https://en.wikipedia.org/wiki/Kernel_(image_processing)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Ilustracja działania funkcji splotu:\n",
|
||
"\n",
|
||
"<img style=\"margin: auto\" height=\"80%\" src=\"https://devblogs.nvidia.com/wp-content/uploads/2015/11/Convolution_schematic.gif\"/>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Jednostka warstwy konwolucyjnej może się składać z jednej lub kilku warstw neuronów."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Jeden neuron może odpowiadać np. za wykrywanie pionowych krawędzi, drugi poziomych, a jeszcze inny np. krzyżujących się linii."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### _Pooling_"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Obrazy składają się na ogół z milionów pikseli. Oznacza to, że nawet po zastosowaniu kilku warstw konwolucyjnych mielibyśmy sporo parametrów do wytrenowania.\n",
|
||
"\n",
|
||
"Żeby zredukować liczbę parametrów, a dzięki temu uprościć obliczenia, stosuje się warstwy ***pooling***.\n",
|
||
"\n",
|
||
"*Pooling* to rodzaj próbkowania. Najpopularniejszą jego odmianą jest *max-pooling*, czyli wybieranie najwyższej wartości spośród kilku sąsiadujących pikseli (rys. 13.1)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"![Rys. 13.1. Pooling](Max_pooling.png \"Rys. 13.1. Pooling\")\n",
|
||
"\n",
|
||
"Rys. 13.1. - źródło: [Aphex34](https://commons.wikimedia.org/wiki/File:Max_pooling.png), [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0), Wikimedia Commons"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Warstwy _pooling_ i konwolucyjne można przeplatać ze sobą (rys. 13.2)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"![Rys. 13.2. CNN](Typical_cnn.png \"Rys. 13.2. CNN\")\n",
|
||
"\n",
|
||
"Rys. 13.2. - źródło: [Aphex34](https://commons.wikimedia.org/wiki/File:Typical_cnn.png), [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0), Wikimedia Commons"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"_Pooling_ – idea: nie jest istotne, w którym *dokładnie* miejscu na obrazku dana cecha (krawędź, oko, itp.) się znajduje, wystarczy przybliżona lokalizacja."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Do sieci konwolucujnych możemy dokładać też warstwy ReLU."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"https://www.youtube.com/watch?v=FmpDIaiMIeA"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Zobacz też: https://colah.github.io/posts/2014-07-Conv-Nets-Modular/"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Przykład: MNIST"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"%matplotlib inline\n",
|
||
"\n",
|
||
"import math\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import numpy as np\n",
|
||
"import random\n",
|
||
"\n",
|
||
"from IPython.display import YouTubeVideo"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-01-27 12:50:47.601029: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
|
||
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
||
"2023-01-27 12:50:48.662241: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n",
|
||
"2023-01-27 12:50:48.662268: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n",
|
||
"2023-01-27 12:50:51.653864: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n",
|
||
"2023-01-27 12:50:51.654326: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n",
|
||
"2023-01-27 12:50:51.654341: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import keras\n",
|
||
"from keras.datasets import mnist\n",
|
||
"\n",
|
||
"from keras.models import Sequential\n",
|
||
"from keras.layers import Dense, Dropout, Flatten\n",
|
||
"from keras.layers import Conv2D, MaxPooling2D\n",
|
||
"\n",
|
||
"# załaduj dane i podziel je na zbiory uczący i testowy\n",
|
||
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def draw_examples(examples, captions=None):\n",
|
||
" plt.figure(figsize=(16, 4))\n",
|
||
" m = len(examples)\n",
|
||
" for i, example in enumerate(examples):\n",
|
||
" plt.subplot(100 + m * 10 + i + 1)\n",
|
||
" plt.imshow(example, cmap=plt.get_cmap('gray'))\n",
|
||
" plt.show()\n",
|
||
" if captions is not None:\n",
|
||
" print(6 * ' ' + (10 * ' ').join(str(captions[i]) for i in range(m)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAADFCAYAAADpJUQuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAomElEQVR4nO3de3RU1d3G8V8CJFyTyC2BQiQqFRQJGgFRFqBE0KoQoKIUBKwFCwFEK6X4oqCIQVBbrmK1kKIoaBFQvFKuVUPK1S5AIlKEIEkAJRcCJErO+4fLVNx78ExmJjOz9/ez1vnDh30m+4Qnh2Eznh3hOI4jAAAAAAAAAKwTGewJAAAAAAAAAAgOFgcBAAAAAAAAS7E4CAAAAAAAAFiKxUEAAAAAAADAUiwOAgAAAAAAAJZicRAAAAAAAACwFIuDAAAAAAAAgKVYHAQAAAAAAAAsxeIgAAAAAAAAYCkWBwEAAAAAAABL1QzUC8+fP19mzZol+fn5kpycLHPnzpVOnTr97HkVFRVy9OhRadCggURERARqerCU4zhSUlIizZs3l8hI79bGq9ppEXqNwPGl0yLcqxF6gtVpEXqNwOFeDdNwr4aJuFfDNF512gmAZcuWOVFRUc6iRYucPXv2OCNGjHDi4uKcgoKCnz03NzfXEREOjoAeubm51dZpes1RHYe3nfa113SaI9BHdXeaXnNUx8G9msO0g3s1h4kH92oO0w43nQ7I4mCnTp2c9PT0yv8+d+6c07x5cycjI+Nnzy0sLAz6N47D/KOwsLDaOk2vOarj8LbTvvaaTnME+qjuTtNrjuo4uFdzmHZwr+Yw8eBezWHa4abTfn/mYHl5uWzfvl1SU1Mrs8jISElNTZWsrCxlfFlZmRQXF1ceJSUl/p4SoPDm49redlqEXqP6efu/IHCvRqgLdKdF6DWqH/dqmIZ7NUzEvRqmcdNpvy8OnjhxQs6dOyfx8fHn5fHx8ZKfn6+Mz8jIkNjY2MqjZcuW/p4S4BNvOy1CrxH6uFfDNNyrYSLu1TAN92qYiHs1TBD03YonTZokRUVFlUdubm6wpwT4jF7DNHQaJqLXMA2dhonoNUxDpxGK/L5bcePGjaVGjRpSUFBwXl5QUCAJCQnK+OjoaImOjvb3NAC/8bbTIvQaoY97NUzDvRom4l4N03Cvhom4V8MEfv/kYFRUlKSkpMi6desqs4qKClm3bp106dLF318OCDg6DRPRa5iGTsNE9BqmodMwEb2GEbzehseFZcuWOdHR0U5mZqazd+9eZ+TIkU5cXJyTn5//s+cWFRUFfScXDvOPoqKiaus0veaojsPbTvvaazrNEeijujtNrzmq4+BezWHawb2aw8SDezWHaYebTgdkcdBxHGfu3LlOYmKiExUV5XTq1MnZsmWLq/P4weCojqMqN/yqdppec1THUZVO+9JrOs0R6KO6O02vOarj4F7NYdrBvZrDxIN7NYdph5tORziO40gIKS4ultjY2GBPA4YrKiqSmJiYavt69BqBRqdhmurutAi9RuBxr4ZpuFfDRNyrYRo3nQ76bsUAAAAAAAAAgoPFQQAAAAAAAMBSLA4CAAAAAAAAlmJxEAAAAAAAALAUi4MAAAAAAACApVgcBAAAAAAAACzF4iAAAAAAAABgKRYHAQAAAAAAAEuxOAgAAAAAAABYisVBAAAAAAAAwFIsDgIAAAAAAACWqhnsCQCAWykpKdp8zJgxSjZ06FDt2CVLlijZ3LlztWN37NjhxewAAAAAAFUxe/ZsbT5u3Dgl2717t5Ldfvvt2vMPHTrk28QswScHAQAAAAAAAEuxOAgAAAAAAABYisVBAAAAAAAAwFIsDgIAAAAAAACWYkOSEFWjRg1tHhsb69Pr6jZuqFu3rnbs5ZdfrmTp6enasc8884ySDRo0SMnOnj2rPX/GjBlK9vjjj2vHwg4dOnRQsrVr12rHxsTEKJnjONqx99xzj5L16dNHO7ZRo0YXmCEQfnr27KlkS5cuVbLu3btrz8/JyfH7nACdyZMnK5mn9wWRkeq/dffo0UPJNm3a5PO8AMAUDRo00Ob169dXsttuu007tkmTJkr23HPPaceWlZV5MTuYrlWrVko2ZMgQ7diKigola9u2rZK1adNGez4bkrjDJwcBAAAAAAAAS7E4CAAAAAAAAFiKxUEAAAAAAADAUiwOAgAAAAAAAJZicRAAAAAAAACwFLsV+ygxMVGbR0VFKdn111+vHdu1a1cli4uL044dMGCA+8n56MiRI0o2Z84c7dh+/fopWUlJiZJ9+umn2vPZQdBunTp1UrIVK1YomafdunU7E+v6JyJSXl6uZJ52Jb7uuuuUbMeOHa5eE1XXrVs3JfP0e7Ry5cpAT8coHTt2VLKtW7cGYSbA94YPH67NJ06cqGS63Qo98bRjPQCYTrcLrO6e2qVLF+357dq18+nrN2vWTJuPGzfOp9eFWY4fP65kmzdv1o7t06dPoKcD4ZODAAAAAAAAgLVYHAQAAAAAAAAsxeIgAAAAAAAAYCkWBwEAAAAAAABLsSGJFzp06KBk69ev1471tHFCKPL0gO/Jkycr2alTp7Rjly5dqmR5eXlKdvLkSe35OTk5F5oiwlDdunWV7JprrtGOfeWVV5TM08OM3dq/f782nzlzppItW7ZMO/bjjz9WMt3PRUZGhpezw4X06NFDyVq3bq0dy4YkepGR+n/7S0pKUrKLL75YySIiIvw+J0BH1z8Rkdq1a1fzTGCyzp07a/MhQ4YoWffu3ZXsyiuvdP21Hn74YW1+9OhRJdNtSiiif1+UnZ3teg4wT5s2bZRs/Pjx2rGDBw9Wsjp16iiZpz/rc3NzlczTRn9t27ZVsoEDB2rHLliwQMn27dunHQvzlZaWKtmhQ4eCMBP8gE8OAgAAAAAAAJZicRAAAAAAAACwFIuDAAAAAAAAgKVYHAQAAAAAAAAsxYYkXjh8+LCSff3119qx1bkhie4BxYWFhdqxN954o5KVl5drx7788ss+zQt2e+GFF5Rs0KBB1fb1PW1+Ur9+fSXbtGmTdqxuY4z27dv7NC/8vKFDhypZVlZWEGYSvjxt6DNixAgl0z34ngeEIxBSU1OVbOzYsa7P99TL22+/XckKCgrcTwxGueuuu5Rs9uzZ2rGNGzdWMt0mDRs3btSe36RJEyWbNWvWz8zwwl/L0+vefffdrl8X4UH398Wnn35aO1bX6wYNGvj09T1t3te7d28lq1Wrlnas7r6s+7m6UA47xcXFKVlycnL1TwSV+OQgAAAAAAAAYCkWBwEAAAAAAABLsTgIAAAAAAAAWIrFQQAAAAAAAMBSLA4CAAAAAAAAlmK3Yi988803SjZhwgTtWN3OeTt37tSOnTNnjus57Nq1S8luvvlmJSstLdWef+WVVyrZAw884PrrAz+VkpKizW+77TYl87Qrn45uB+G3335bO/aZZ55RsqNHj2rH6n4OT548qR170003KZk314CqiYzk36189dJLL7ke62m3QqCqunbtqs0XL16sZLrdOj3xtAvsoUOHXL8GwlPNmupfWa699lrt2BdffFHJ6tatqx27efNmJZs2bZqSffTRR9rzo6Ojlez111/Xju3Vq5c219m2bZvrsQhf/fr1U7Lf/e53AflaBw4cUDLd3yFFRHJzc5Xssssu8/ucYDfdfTkxMdGn1+zYsaM21+2qzXsHFX8DAwAAAAAAACzF4iAAAAAAAABgKRYHAQAAAAAAAEuxOAgAAAAAAABYyusNSTZv3iyzZs2S7du3S15enqxcuVLS0tIqf91xHJkyZYq8+OKLUlhYKDfccIM8//zz0rp1a3/OO2SsWrVKm69fv17JSkpKtGOTk5OV7L777tOO1W284GnzEZ09e/Yo2ciRI12fbyI67V6HDh2UbO3atdqxMTExSuY4jnbse++9p2SDBg1Ssu7du2vPnzx5spJ52pDh+PHjSvbpp59qx1ZUVCiZbqOVa665Rnv+jh07tHmghUun27dvr83j4+OrdR4m8maTB08/w6EmXHoNkWHDhmnz5s2bu36NjRs3KtmSJUuqOqWQRKfdGzJkiJJ5s/GSp/vcXXfdpWTFxcWuX1d3vjcbjxw5ckSb//3vf3f9GqGGXrt35513+nT+l19+qc23bt2qZBMnTlQy3cYjnrRt29b1WNPQ6cDQbR6ZmZmpHTt16lRXr+lpXGFhoZLNmzfP1WvaxOtPDpaWlkpycrLMnz9f++szZ86UOXPmyMKFCyU7O1vq1asnvXv3lrNnz/o8WSAQ6DRMQ6dhInoN09BpmIhewzR0Grbw+pODt956q9x6663aX3McR/7yl7/I5MmTpW/fviLy/b/yxsfHy6pVq+Tuu+/2bbZAANBpmIZOw0T0Gqah0zARvYZp6DRs4ddnDh48eFDy8/MlNTW1MouNjZXOnTtLVlaW9pyysjIpLi4+7wBCRVU6LUKvEbroNExEr2EaOg0T0WuYhk7DJH5dHMzPzxcR9XlR8fHxlb/2UxkZGRIbG1t5tGzZ0p9TAnxSlU6L0GuELjoNE9FrmIZOw0T0Gqah0zBJ0HcrnjRpkhQVFVUe3jwYFQhV9BqmodMwEb2Gaeg0TESvYRo6jVDk9TMHLyQhIUFERAoKCqRZs2aVeUFBgXaXUxGR6OhoiY6O9uc0QoI3Hw0uKipyPXbEiBFKtnz5ciXT7bIK71Wl0yLh3+tf/vKX2nzChAlK5mlX1BMnTihZXl6edqxuV75Tp04p2TvvvKM931MeCHXq1FGyP/zhD9qxgwcPDvR0vBZKnf7Vr36lzXXfY3im2905KSnJ9flfffWVP6cTFKHUa9s0btxYyX77299qx+rem+h2EBQRefLJJ32aV7iztdPTpk3T5o888oiSOY6jHbtgwQIlmzx5snasr/8r3//93//5dP64ceO0+fHjx3163VBla6890f29buTIkdqxH374oZJ98cUX2rHHjh3zbWIauvcaoNP+5unPALe7FcM3fv3kYFJSkiQkJMi6desqs+LiYsnOzpYuXbr480sB1YJOwzR0Giai1zANnYaJ6DVMQ6dhEq8/OXjq1Knz/pXi4MGDsmvXLmnYsKEkJibK+PHj5cknn5TWrVtLUlKSPProo9K8eXNJS0vz57wBv6HTMA2dhonoNUxDp2Eieg3T0GnYwuvFwW3btsmNN95Y+d8PPfSQiIgMGzZMMjMz5Y9//KOUlpbKyJEjpbCwULp27Srvv/++1K5d23+zBvyITsM0dBomotcwDZ2Gieg1TEOnYQuvFwd79Ojh8RkfIiIRERHyxBNPyBNPPOHTxIDqQqdhGjoNE9FrmIZOw0T0Gqah07CFXzckQdXoHrCZkpKiHdu9e3clS01NVTLdQ2sBHd3DcJ955hntWN0GEiUlJdqxQ4cOVbJt27Zpx4b7BhSJiYnBnkJYuvzyy12P3bNnTwBnEt50P6+eHhz++eefK5mnn2Hgp1q1aqVkK1as8Ok1586dq803bNjg0+si9D322GNKptt4RESkvLxcyT744APt2IkTJyrZmTNnXM9L92mfXr16acfq/vyPiIjQjtVtsrN69WrX84J5jh49qmShuvECz89DMEVGqltlsAGr//l1QxIAAAAAAAAA4YPFQQAAAAAAAMBSLA4CAAAAAAAAlmJxEAAAAAAAALAUi4MAAAAAAACApditOASUlpYq2YgRI7Rjd+zYoWQvvviiknna5U+3W+z8+fO1Yy+0ZTvMcfXVVyuZbldiT/r27avNN23aVOU5AT+1devWYE8hIGJiYrT5LbfcomRDhgzRjvW0i6bOtGnTlKywsND1+bCbrpft27d3ff66deuUbPbs2T7NCeEhLi5OyUaPHq1knt576nYmTktL83VactlllynZ0qVLlSwlJcX1a/7jH//Q5jNnznQ/McAH48aNU7J69er59JpXXXWV67GffPKJNs/KyvJpDrCXbmdi1ir8j08OAgAAAAAAAJZicRAAAAAAAACwFIuDAAAAAAAAgKVYHAQAAAAAAAAsxYYkIerAgQPafPjw4Uq2ePFiJbvnnnu05+tyTw+oXbJkiZLl5eVpxyJ8Pffcc0oWERGhHavbZMTkjUciI9V/P9E9EBeB17Bhw4C8bnJyspJ56n9qaqqStWjRQjs2KipKyQYPHqxkuo6JiJw5c0bJsrOztWPLysqUrGZN/R/v27dv1+bAj3na6GHGjBmuzv/oo4+0+bBhw5SsqKjI9bwQvnT3xMaNG7s+X7fBQtOmTbVj7733XiXr06ePdmy7du2UrH79+krm6cH3uvyVV17RjtVtQAj8VN26dbX5FVdcoWRTpkzRjnW7saCn9yDevNc9evSokul+BkVEzp075/p1AVQ/PjkIAAAAAAAAWIrFQQAAAAAAAMBSLA4CAAAAAAAAlmJxEAAAAAAAALAUG5KEmZUrVyrZ/v37lUy3yYSISM+ePZXsqaee0o69+OKLlWz69OnasV999ZU2R2i5/fbblaxDhw5K5unB22+99Za/pxTSdA9k1n1vdu3aVQ2zMY9u0w0R/fd44cKF2rGPPPKIT3No3769knnakOS7775TstOnT2vH7t27V8kWLVqkZNu2bdOer9vop6CgQDv2yJEjSlanTh3t2H379mlz2KtVq1ZKtmLFCp9e87///a8299RhmK+8vFzJjh8/rmRNmjTRnn/w4EEl8/RexRu6zRSKi4uVrFmzZtrzT5w4oWRvv/22z/OCWWrVqqXNr776aiXzdP/VddDT+yhdr7OyspTslltu0Z7vaVMUHd0GaP3799eOnT17tpLp7g0AgoNPDgIAAAAAAACWYnEQAAAAAAAAsBSLgwAAAAAAAIClWBwEAAAAAAAALMXiIAAAAAAAAGApdis2wO7du5Vs4MCB2rF33HGHki1evFg79v7771ey1q1ba8fefPPNF5oiQoRuB9OoqCglO3bsmPb85cuX+31O1S06OlrJpk6d6vr89evXK9mkSZN8mZK1Ro8erc0PHTqkZNdff31A5nD48GElW7VqlXbsZ599pmRbtmzx95Q8GjlypDbX7e7pabdY4KcmTpyoZLqd2r0xY8YMn86HeQoLC5UsLS1NydasWaM9v2HDhkp24MAB7djVq1crWWZmpnbsN998o2TLli1TMk+7FevGwm6699WedgV+8803Xb/u448/rmS696QiIh9//LGS6X6GPJ3frl071/PSvQfJyMjQjnX7nqusrMz114cdIiPVz7R5816lW7duSjZv3jyf5mQiPjkIAAAAAAAAWIrFQQAAAAAAAMBSLA4CAAAAAAAAlmJxEAAAAAAAALAUG5IYSvfgZxGRl19+Wcleeukl7diaNdV66B7mKSLSo0cPJdu4caPH+SG0eXoQcF5eXjXPpOp0G4+IiEyePFnJJkyYoB175MgRJXv22WeV7NSpU17ODhfy9NNPB3sKIalnz56ux65YsSKAM0E46tChgzbv1auXT6+r2/whJyfHp9eEHbKzs5VMt7lBIOne13bv3l3JPD34ns2f7FarVi0l020c4ul9ps57772nzefOnatknv6+p/s5evfdd5Xsqquu0p5fXl6uZDNnztSO1W1e0rdvX+3YpUuXKtk///lPJfP0PvDkyZPaXGfXrl2uxyL06e7BjuO4Pr9///5KdsUVV2jH7t271/3EDMMnBwEAAAAAAABLsTgIAAAAAAAAWIrFQQAAAAAAAMBSLA4CAAAAAAAAlmJxEAAAAAAAALAUuxUboH379kr261//Wju2Y8eOSqbbldgTT7v3bN682fVrIPS99dZbwZ6CV3S7cHraGe6uu+5SMt1umyIiAwYM8GleQLCsXLky2FNAiPnwww+1+UUXXeT6NbZs2aJkw4cPr+qUgKCrU6eOknmzK+ayZcv8PieEnho1amjzadOmKdnDDz+sZKWlpdrz//SnPymZp07pdia+9tprtWPnzZunZFdffbWS7d+/X3v+qFGjlGzDhg3asTExMUp2/fXXa8cOHjxYyfr06aNka9eu1Z6vk5ubq82TkpJcvwZC38KFC5Xs/vvv9+k1R44cqc3Hjx/v0+uGMz45CAAAAAAAAFiKxUEAAAAAAADAUiwOAgAAAAAAAJZicRAAAAAAAACwFBuShKjLL79cm48ZM0bJ+vfvr2QJCQk+z+HcuXNKlpeXpx2re3gzQk9ERISrLC0tTXv+Aw884O8peeXBBx/U5o8++qiSxcbGascuXbpUyYYOHerbxAAgxDVq1Eibe/Pn94IFC5Ts1KlTVZ4TEGwffPBBsKeAMOBp4wLd5iOnT59WMk8bJ+g2irruuuu0Y++9914lu/XWW7VjdRvtPPHEE0q2ePFi7fmeNvnQKS4uVrL3339fO1aXDxo0SMl+85vfuP76nv5uALPs27cv2FOwAp8cBAAAAAAAACzF4iAAAAAAAABgKRYHAQAAAAAAAEuxOAgAAAAAAABYyqvFwYyMDOnYsaM0aNBAmjZtKmlpaZKTk3PemLNnz0p6ero0atRI6tevLwMGDJCCggK/ThrwJ3oN09BpmIhewzR0Gqah0zARvYYtIhzHcdwOvuWWW+Tuu++Wjh07ynfffSePPPKI7N69W/bu3Sv16tUTEZFRo0bJO++8I5mZmRIbGytjxoyRyMhI+fjjj119jeLiYo+7jIY7TzsI63Zp0u1KLCLSqlUrf05JRES2bdumzadPn65kb731lt+/fjAUFRVJTEyMiNjV6zvvvFPJXnvtNSXT7VQtIvLCCy8o2aJFi7Rjv/76ayXztAPbPffco2TJyclK1qJFC+35hw8fVrItW7Zox86ePdv12HBia6dtsnz5cm0+cOBAJRs2bJh27JIlS/w6p0D6cadF6LU3dDtQDh8+XDvWm92KL7nkEiU7dOiQ6/PBvTrU9O7dW8neffddJfP016VmzZop2fHjx32fWBip7k6LVH+v8/LytHmTJk2UrKysTMk87bT6w/fkxy677DIvZ6eaOnWqkmVkZCiZp/f74F4dDj7//HMlu/TSS12fHxmp/5yc7mfwwIED7icWon76vlqnpjcv+NPtxzMzM6Vp06ayfft26datmxQVFcnf/vY3efXVV+Wmm24Ske/foLZt21a2bNnicWEACCZ6DdPQaZiIXsM0dBqmodMwEb2GLXx65mBRUZGIiDRs2FBERLZv3y7ffvutpKamVo5p06aNJCYmSlZWlvY1ysrKpLi4+LwDCCZ6DdPQaZiIXsM0dBqm8UenReg1Qgv3apiqyouDFRUVMn78eLnhhhukXbt2IiKSn58vUVFREhcXd97Y+Ph4yc/P175ORkaGxMbGVh4tW7as6pQAn9FrmIZOw0T0Gqah0zCNvzotQq8ROrhXw2RVXhxMT0+X3bt3y7Jly3yawKRJk6SoqKjyyM3N9en1AF/Qa5iGTsNE9BqmodMwjb86LUKvETq4V8NkXj1z8AdjxoyRNWvWyObNm8/bICAhIUHKy8ulsLDwvJXzgoICj5txREdHS3R0dFWmERLi4+O1+RVXXKFk8+bN045t06aNX+ckIpKdna3NZ82apWSrV6/WjvXmIeUmoNf/U6NGDW0+evRoJRswYIB2rO7j8a1bt/ZpXp988ok237Bhg5I99thjPn0tE9BpO+gelO/pIcsmoNf/06FDB23+4/+16Qee/kwvLy9Xsvnz52vHsvNiYNDp4NFtsgPf+bPTIsHvtadPf+k2JNHNU7fJnie6DXFERDZv3qxkq1at0o798ssvlYzNR3zHvTq07NmzR8m8uafbttbhhld/e3AcR8aMGSMrV66U9evXS1JS0nm/npKSIrVq1ZJ169ZVZjk5OXL48GHp0qWLf2YM+Bm9hmnoNExEr2EaOg3T0GmYiF7DFl59cjA9PV1effVVWb16tTRo0KDyX1FiY2OlTp06EhsbK/fdd5889NBD0rBhQ4mJiZGxY8dKly5d2KUHIYtewzR0Giai1zANnYZp6DRMRK9hC68WB59//nkREenRo8d5+eLFi2X48OEiIvLnP/9ZIiMjZcCAAVJWVia9e/eWBQsW+GWyQCDQa5iGTsNE9BqmodMwDZ2Gieg1bOHV4qDuuUY/Vbt2bZk/f77H59UAoYZewzR0Giai1zANnYZp6DRMRK9hiyptSGKDhg0bKtkLL7ygZJ4eBh6oBxzrNmR49tlnleyDDz7Qnn/mzBm/zwnhIysrS8m2bt2qZB07dnT9mp4etOtpsx6dr7/+Wsl0u4A98MADrl8TsJmnZ9xkZmZW70QQUD9+8PmPXejB/j/11VdfKdnDDz9c1SkBYeVf//qXkuk2dOLB9Xbr1q2bNk9LS1Oya665RsmOHTumPX/RokVKdvLkSe1Y3eZRgM3++te/Ktkdd9wRhJmYw9ztDAEAAAAAAABcEIuDAAAAAAAAgKVYHAQAAAAAAAAsxeIgAAAAAAAAYCkWBwEAAAAAAABLWbVbcefOnZVswoQJ2rGdOnVSsl/84hd+n5OIyOnTp5Vszpw52rFPPfWUkpWWlvp9TjDTkSNHlKx///5Kdv/992vPnzx5sk9ff/bs2dr8+eefV7IvvvjCp68F2CIiIiLYUwCAsLR7924l279/v5Jdcskl2vMvvfRSJTt+/LjvE0NIKSkp0eYvv/yyqwyA/+3du1fJPvvsM+3Ytm3bBno6RuCTgwAAAAAAAIClWBwEAAAAAAAALMXiIAAAAAAAAGApFgcBAAAAAAAAS1m1IUm/fv1cZd7QPQhTRGTNmjVK9t1332nHPvvss0pWWFjo07wAt/Ly8pRs6tSp2rGecgCB995772nzO++8s5pnglCxb98+bf7JJ58oWdeuXQM9HcAIus3/XnrpJe3Y6dOnK9nYsWO1Yz39nQEA4L1Dhw4p2VVXXRWEmZiDTw4CAAAAAAAAlmJxEAAAAAAAALAUi4MAAAAAAACApVgcBAAAAAAAACzF4iAAAAAAAABgqQjHcZxgT+LHiouLJTY2NtjTgOGKiookJiam2r4evUag0WmYpro7LUKvEXjcq0Of7vfn9ddf145NTU1VsjfffFM79t5771Wy0tJSL2cXerhXw0Tcq2EaN53mk4MAAAAAAACApVgcBAAAAAAAACzF4iAAAAAAAABgKRYHAQAAAAAAAEvVDPYEAAAAACAUFBcXK9nAgQO1Y6dPn65ko0aN0o6dOnWqku3du9e7yQEAECB8chAAAAAAAACwFIuDAAAAAAAAgKVYHAQAAAAAAAAsxeIgAAAAAAAAYCkWBwEAAAAAAABLsVsxAAAAAHig28FYRGTs2LGuMgAAQh2fHAQAAAAAAAAsxeIgAAAAAAAAYCkWBwEAAAAAAABLhdzioOM4wZ4CLFDdPaPXCDQ6DdMEo2P0GoHGvRqm4V4NE3GvhmncdCzkFgdLSkqCPQVYoLp7Rq8RaHQapglGx+g1Ao17NUzDvRom4l4N07jpWIQTYsvUFRUVcvToUWnQoIGUlJRIy5YtJTc3V2JiYoI9Nb8pLi7muoLEcRwpKSmR5s2bS2Rk9a2N0+vwFerXRacDJ9R/76sq1K8rWJ0W+V+vHceRxMTEkP0eVVWo/95XVThcF/fqwAmH3/+qCPXr4l4dOKH+e19V4XBd3KsDJxx+/6si1K/Lm07XrKY5uRYZGSktWrQQEZGIiAgREYmJiQnJb7SvuK7giI2NrfavSa/DXyhfF50OLK6r+gWj0yL/63VxcbGIhPb3yBdcV3Bwrw4srqv6ca8OLK4rOLhXBxbXVf3cdjrk/rdiAAAAAAAAANWDxUEAAAAAAADAUiG9OBgdHS1TpkyR6OjoYE/Fr7guu5n6feK67GXq94jrspep3yOuy26mfp+4LnuZ+j3iuuxm6veJ6wp9IbchCQAAAAAAAIDqEdKfHAQAAAAAAAAQOCwOAgAAAAAAAJZicRAAAAAAAACwFIuDAAAAAAAAgKVYHAQAAAAAAAAsFdKLg/Pnz5dWrVpJ7dq1pXPnzvLvf/872FPyyubNm+WOO+6Q5s2bS0REhKxateq8X3ccRx577DFp1qyZ1KlTR1JTU2X//v3BmaxLGRkZ0rFjR2nQoIE0bdpU0tLSJCcn57wxZ8+elfT0dGnUqJHUr19fBgwYIAUFBUGacWih06GJXldduHdaxMxe02nfhHuvTey0CL32Rbh3WsTMXtNp34R7r03stAi99kW4d1rEzF7b0umQXRxcvny5PPTQQzJlyhTZsWOHJCcnS+/eveXYsWPBnpprpaWlkpycLPPnz9f++syZM2XOnDmycOFCyc7Olnr16knv3r3l7Nmz1TxT9zZt2iTp6emyZcsWWbt2rXz77bfSq1cvKS0trRzz4IMPyttvvy1vvPGGbNq0SY4ePSr9+/cP4qxDA50OXfS6akzotIiZvabTVWdCr03stAi9rioTOi1iZq/pdNWZ0GsTOy1Cr6vKhE6LmNlrazrthKhOnTo56enplf997tw5p3nz5k5GRkYQZ1V1IuKsXLmy8r8rKiqchIQEZ9asWZVZYWGhEx0d7bz22mtBmGHVHDt2zBERZ9OmTY7jfH8NtWrVct54443KMZ999pkjIk5WVlawphkS6HT4oNfumNZpxzG313TaPdN6bWqnHYdeu2Vapx3H3F7TafdM67WpnXYceu2WaZ12HHN7bWqnQ/KTg+Xl5bJ9+3ZJTU2tzCIjIyU1NVWysrKCODP/OXjwoOTn5593jbGxsdK5c+ewusaioiIREWnYsKGIiGzfvl2+/fbb866rTZs2kpiYGFbX5W90OryukV7/PBs6LWJOr+m0Ozb02pROi9BrN2zotIg5vabT7tjQa1M6LUKv3bCh0yLm9NrUTofk4uCJEyfk3LlzEh8ff14eHx8v+fn5QZqVf/1wHeF8jRUVFTJ+/Hi54YYbpF27diLy/XVFRUVJXFzceWPD6boCgU6HzzXSa3ds6LSIGb2m0+7Z0GsTOi1Cr92yodMiZvSaTrtnQ69N6LQIvXbLhk6LmNFrkztdM9gTQPhKT0+X3bt3y0cffRTsqQB+Q69hGjoNE9FrmIZOw0T0GqYxudMh+cnBxo0bS40aNZTdXQoKCiQhISFIs/KvH64jXK9xzJgxsmbNGtmwYYO0aNGiMk9ISJDy8nIpLCw8b3y4XFeg0OnwuEZ67Z4NnRYJ/17Tae/Y0Otw77QIvfaGDZ0WCf9e02nv2NDrcO+0CL32hg2dFgn/Xpve6ZBcHIyKipKUlBRZt25dZVZRUSHr1q2TLl26BHFm/pOUlCQJCQnnXWNxcbFkZ2eH9DU6jiNjxoyRlStXyvr16yUpKem8X09JSZFatWqdd105OTly+PDhkL6uQKPToX2N9Np7NnRaJHx7TaerxoZeh2unReh1VdjQaZHw7TWdrhobeh2unRah11VhQ6dFwrfX1nQ6iJuhXNCyZcuc6OhoJzMz09m7d68zcuRIJy4uzsnPzw/21FwrKSlxdu7c6ezcudMREee5555zdu7c6Rw6dMhxHMeZMWOGExcX56xevdr5z3/+4/Tt29dJSkpyzpw5E+SZezZq1CgnNjbW2bhxo5OXl1d5nD59unLM73//eycxMdFZv369s23bNqdLly5Oly5dgjjr0ECnQxe9rhoTOu04ZvaaTledCb02sdOOQ6+ryoROO46ZvabTVWdCr03stOPQ66oyodOOY2avbel0yC4OOo7jzJ0710lMTHSioqKcTp06OVu2bAn2lLyyYcMGR0SUY9iwYY7jfL+V96OPPurEx8c70dHRTs+ePZ2cnJzgTvpn6K5HRJzFixdXjjlz5owzevRo56KLLnLq1q3r9OvXz8nLywvepEMInQ5N9Lrqwr3TjmNmr+m0b8K91yZ22nHotS/CvdOOY2av6bRvwr3XJnbacei1L8K9045jZq9t6XSE4ziOd581BAAAAAAAAGCCkHzmIAAAAAAAAIDAY3EQAAAAAAAAsBSLgwAAAAAAAIClWBwEAAAAAAAALMXiIAAAAAAAAGApFgcBAAAAAAAAS7E4CAAAAAAAAFiKxUEAAAAAAADAUiwOAgAAAAAAAJZicRAAAAAAAACwFIuDAAAAAAAAgKX+H9kDRDMQW71hAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 1600x400 with 7 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" 5 0 4 1 9 2 1\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"draw_examples(x_train[:7], captions=y_train)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"batch_size = 128\n",
|
||
"num_classes = 10\n",
|
||
"epochs = 12\n",
|
||
"\n",
|
||
"# input image dimensions\n",
|
||
"img_rows, img_cols = 28, 28"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"if keras.backend.image_data_format() == 'channels_first':\n",
|
||
" x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n",
|
||
" x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n",
|
||
" input_shape = (1, img_rows, img_cols)\n",
|
||
"else:\n",
|
||
" x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n",
|
||
" x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n",
|
||
" input_shape = (img_rows, img_cols, 1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"x_train shape: (60000, 28, 28, 1)\n",
|
||
"60000 train samples\n",
|
||
"10000 test samples\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"x_train = x_train.astype('float32')\n",
|
||
"x_test = x_test.astype('float32')\n",
|
||
"x_train /= 255\n",
|
||
"x_test /= 255\n",
|
||
"print('x_train shape: {}'.format(x_train.shape))\n",
|
||
"print('{} train samples'.format(x_train.shape[0]))\n",
|
||
"print('{} test samples'.format(x_test.shape[0]))\n",
|
||
"\n",
|
||
"# convert class vectors to binary class matrices\n",
|
||
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
||
"y_test = keras.utils.to_categorical(y_test, num_classes)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-01-27 12:51:13.294000: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n",
|
||
"2023-01-27 12:51:13.295301: W tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:265] failed call to cuInit: UNKNOWN ERROR (303)\n",
|
||
"2023-01-27 12:51:13.295539: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (ELLIOT): /proc/driver/nvidia/version does not exist\n",
|
||
"2023-01-27 12:51:13.298310: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
|
||
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"model = Sequential()\n",
|
||
"model.add(Conv2D(32, kernel_size=(3, 3),\n",
|
||
" activation='relu',\n",
|
||
" input_shape=input_shape))\n",
|
||
"model.add(Conv2D(64, (3, 3), activation='relu'))\n",
|
||
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
|
||
"model.add(Dropout(0.25))\n",
|
||
"model.add(Flatten())\n",
|
||
"model.add(Dense(128, activation='relu'))\n",
|
||
"model.add(Dropout(0.5))\n",
|
||
"model.add(Dense(num_classes, activation='softmax'))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Model: \"sequential\"\n",
|
||
"_________________________________________________________________\n",
|
||
" Layer (type) Output Shape Param # \n",
|
||
"=================================================================\n",
|
||
" conv2d (Conv2D) (None, 26, 26, 32) 320 \n",
|
||
" \n",
|
||
" conv2d_1 (Conv2D) (None, 24, 24, 64) 18496 \n",
|
||
" \n",
|
||
" max_pooling2d (MaxPooling2D (None, 12, 12, 64) 0 \n",
|
||
" ) \n",
|
||
" \n",
|
||
" dropout (Dropout) (None, 12, 12, 64) 0 \n",
|
||
" \n",
|
||
" flatten (Flatten) (None, 9216) 0 \n",
|
||
" \n",
|
||
" dense (Dense) (None, 128) 1179776 \n",
|
||
" \n",
|
||
" dropout_1 (Dropout) (None, 128) 0 \n",
|
||
" \n",
|
||
" dense_1 (Dense) (None, 10) 1290 \n",
|
||
" \n",
|
||
"=================================================================\n",
|
||
"Total params: 1,199,882\n",
|
||
"Trainable params: 1,199,882\n",
|
||
"Non-trainable params: 0\n",
|
||
"_________________________________________________________________\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"model.summary()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'model' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn [1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(loss\u001b[38;5;241m=\u001b[39mkeras\u001b[38;5;241m.\u001b[39mlosses\u001b[38;5;241m.\u001b[39mcategorical_crossentropy,\n\u001b[1;32m 2\u001b[0m optimizer\u001b[38;5;241m=\u001b[39mkeras\u001b[38;5;241m.\u001b[39moptimizers\u001b[38;5;241m.\u001b[39mAdadelta(),\n\u001b[1;32m 3\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'model' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"model.compile(loss=keras.losses.categorical_crossentropy,\n",
|
||
" optimizer=keras.optimizers.Adadelta(),\n",
|
||
" metrics=['accuracy'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Train on 60000 samples, validate on 10000 samples\n",
|
||
"Epoch 1/12\n",
|
||
"60000/60000 [==============================] - 333s - loss: 0.3256 - acc: 0.9037 - val_loss: 0.0721 - val_acc: 0.9780\n",
|
||
"Epoch 2/12\n",
|
||
"60000/60000 [==============================] - 342s - loss: 0.1088 - acc: 0.9683 - val_loss: 0.0501 - val_acc: 0.9835\n",
|
||
"Epoch 3/12\n",
|
||
"60000/60000 [==============================] - 366s - loss: 0.0837 - acc: 0.9748 - val_loss: 0.0429 - val_acc: 0.9860\n",
|
||
"Epoch 4/12\n",
|
||
"60000/60000 [==============================] - 311s - loss: 0.0694 - acc: 0.9788 - val_loss: 0.0380 - val_acc: 0.9878\n",
|
||
"Epoch 5/12\n",
|
||
"60000/60000 [==============================] - 325s - loss: 0.0626 - acc: 0.9815 - val_loss: 0.0334 - val_acc: 0.9886\n",
|
||
"Epoch 6/12\n",
|
||
"60000/60000 [==============================] - 262s - loss: 0.0552 - acc: 0.9835 - val_loss: 0.0331 - val_acc: 0.9890\n",
|
||
"Epoch 7/12\n",
|
||
"60000/60000 [==============================] - 218s - loss: 0.0494 - acc: 0.9852 - val_loss: 0.0291 - val_acc: 0.9903\n",
|
||
"Epoch 8/12\n",
|
||
"60000/60000 [==============================] - 218s - loss: 0.0461 - acc: 0.9859 - val_loss: 0.0294 - val_acc: 0.9902\n",
|
||
"Epoch 9/12\n",
|
||
"60000/60000 [==============================] - 219s - loss: 0.0423 - acc: 0.9869 - val_loss: 0.0287 - val_acc: 0.9907\n",
|
||
"Epoch 10/12\n",
|
||
"60000/60000 [==============================] - 218s - loss: 0.0418 - acc: 0.9875 - val_loss: 0.0299 - val_acc: 0.9906\n",
|
||
"Epoch 11/12\n",
|
||
"60000/60000 [==============================] - 218s - loss: 0.0388 - acc: 0.9879 - val_loss: 0.0304 - val_acc: 0.9905\n",
|
||
"Epoch 12/12\n",
|
||
"60000/60000 [==============================] - 218s - loss: 0.0366 - acc: 0.9889 - val_loss: 0.0275 - val_acc: 0.9910\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<keras.callbacks.History at 0x7f70b80b1a10>"
|
||
]
|
||
},
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"model.fit(x_train, y_train,\n",
|
||
" batch_size=batch_size,\n",
|
||
" epochs=epochs,\n",
|
||
" verbose=1,\n",
|
||
" validation_data=(x_test, y_test))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"('Test loss:', 0.027530849870144449)\n",
|
||
"('Test accuracy:', 0.99099999999999999)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"score = model.evaluate(x_test, y_test, verbose=0)\n",
|
||
"print('Test loss:', score[0])\n",
|
||
"print('Test accuracy:', score[1])"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"author": "Paweł Skórzewski",
|
||
"celltoolbar": "Slideshow",
|
||
"email": "pawel.skorzewski@amu.edu.pl",
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"lang": "pl",
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.12"
|
||
},
|
||
"livereveal": {
|
||
"start_slideshow_at": "selected",
|
||
"theme": "white"
|
||
},
|
||
"subtitle": "12.Splotowe sieci neuronowe[wykład]",
|
||
"title": "Uczenie maszynowe",
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
|
||
}
|
||
},
|
||
"year": "2021"
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|