Wykład 10 i 11
This commit is contained in:
parent
52896c2a9d
commit
3405d80635
@ -266,7 +266,7 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"$$ f(x_1, x_2) = \\max(x_1 + x_2) \\hskip{12em} \\\\\n",
|
||||
"$$ f(x_1, x_2) = \\max(x_1, x_2) \\hskip{12em} \\\\\n",
|
||||
"\\to \\qquad \\frac{\\partial f}{\\partial x_1} = \\mathbb{1}_{x \\geq y}, \\quad \\frac{\\partial f}{\\partial x_2} = \\mathbb{1}_{y \\geq x}, \\quad \\nabla f = (\\mathbb{1}_{x \\geq y}, \\mathbb{1}_{y \\geq x}) $$ "
|
||||
]
|
||||
},
|
||||
@ -755,7 +755,7 @@
|
||||
"\n",
|
||||
"Pojedyncza iteracja:\n",
|
||||
"* Dla parametrów $\\Theta = (\\Theta^{(1)},\\ldots,\\Theta^{(L)})$ utwórz pomocnicze macierze zerowe $\\Delta = (\\Delta^{(1)},\\ldots,\\Delta^{(L)})$ o takich samych wymiarach (dla uproszczenia opuszczono wagi $\\beta$).\n",
|
||||
"* Dla $m$ przykładów we wsadzie (_batch_), $i = 1,\\ldots,m$:\n",
|
||||
"* Dla $m$ przykładów we wsadzie (*batch*), $i = 1,\\ldots,m$:\n",
|
||||
" * Wykonaj algortym propagacji wstecznej dla przykładu $(x^{(i)}, y^{(i)})$ i przechowaj gradienty $\\nabla_{\\Theta}J^{(i)}(\\Theta)$ dla tego przykładu;\n",
|
||||
" * $\\Delta := \\Delta + \\dfrac{1}{m}\\nabla_{\\Theta}J^{(i)}(\\Theta)$\n",
|
||||
"* Wykonaj aktualizację wag: $\\Theta := \\Theta - \\alpha \\Delta$"
|
||||
@ -969,7 +969,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"scrolled": true,
|
||||
"slideshow": {
|
||||
@ -981,19 +981,15 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Model: \"sequential_1\"\n",
|
||||
"Model: \"sequential\"\n",
|
||||
"_________________________________________________________________\n",
|
||||
"Layer (type) Output Shape Param # \n",
|
||||
"=================================================================\n",
|
||||
"dense_3 (Dense) (None, 512) 401920 \n",
|
||||
"dense (Dense) (None, 512) 401920 \n",
|
||||
"_________________________________________________________________\n",
|
||||
"dropout (Dropout) (None, 512) 0 \n",
|
||||
"dense_1 (Dense) (None, 512) 262656 \n",
|
||||
"_________________________________________________________________\n",
|
||||
"dense_4 (Dense) (None, 512) 262656 \n",
|
||||
"_________________________________________________________________\n",
|
||||
"dropout_1 (Dropout) (None, 512) 0 \n",
|
||||
"_________________________________________________________________\n",
|
||||
"dense_5 (Dense) (None, 10) 5130 \n",
|
||||
"dense_2 (Dense) (None, 10) 5130 \n",
|
||||
"=================================================================\n",
|
||||
"Total params: 669,706\n",
|
||||
"Trainable params: 669,706\n",
|
||||
@ -1004,10 +1000,8 @@
|
||||
],
|
||||
"source": [
|
||||
"model = keras.Sequential()\n",
|
||||
"model.add(Dense(512, activation='relu', input_shape=(784,)))\n",
|
||||
"model.add(Dropout(0.2))\n",
|
||||
"model.add(Dense(512, activation='relu'))\n",
|
||||
"model.add(Dropout(0.2))\n",
|
||||
"model.add(Dense(512, activation='tanh', input_shape=(784,)))\n",
|
||||
"model.add(Dense(512, activation='tanh'))\n",
|
||||
"model.add(Dense(num_classes, activation='softmax'))\n",
|
||||
"\n",
|
||||
"model.summary() # wyświetl podsumowanie architektury sieci"
|
||||
@ -1015,7 +1009,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
@ -1036,55 +1030,28 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/10\n",
|
||||
"469/469 [==============================] - 20s 42ms/step - loss: 0.0957 - accuracy: 0.9708 - val_loss: 0.0824 - val_accuracy: 0.9758\n",
|
||||
"Epoch 2/10\n",
|
||||
"469/469 [==============================] - 20s 43ms/step - loss: 0.0693 - accuracy: 0.9793 - val_loss: 0.0807 - val_accuracy: 0.9772\n",
|
||||
"Epoch 3/10\n",
|
||||
"469/469 [==============================] - 18s 38ms/step - loss: 0.0563 - accuracy: 0.9827 - val_loss: 0.0861 - val_accuracy: 0.9758\n",
|
||||
"Epoch 4/10\n",
|
||||
"469/469 [==============================] - 18s 37ms/step - loss: 0.0485 - accuracy: 0.9857 - val_loss: 0.0829 - val_accuracy: 0.9794\n",
|
||||
"Epoch 5/10\n",
|
||||
"469/469 [==============================] - 19s 41ms/step - loss: 0.0428 - accuracy: 0.9876 - val_loss: 0.0955 - val_accuracy: 0.9766\n",
|
||||
"Epoch 6/10\n",
|
||||
"469/469 [==============================] - 22s 47ms/step - loss: 0.0377 - accuracy: 0.9887 - val_loss: 0.0809 - val_accuracy: 0.9794\n",
|
||||
"Epoch 7/10\n",
|
||||
"469/469 [==============================] - 17s 35ms/step - loss: 0.0338 - accuracy: 0.9904 - val_loss: 0.1028 - val_accuracy: 0.9788\n",
|
||||
"Epoch 8/10\n",
|
||||
"469/469 [==============================] - 17s 36ms/step - loss: 0.0322 - accuracy: 0.9911 - val_loss: 0.0937 - val_accuracy: 0.9815\n",
|
||||
"Epoch 9/10\n",
|
||||
"469/469 [==============================] - 18s 37ms/step - loss: 0.0303 - accuracy: 0.9912 - val_loss: 0.0916 - val_accuracy: 0.9829.0304 - accu\n",
|
||||
"Epoch 10/10\n",
|
||||
"469/469 [==============================] - 16s 34ms/step - loss: 0.0263 - accuracy: 0.9926 - val_loss: 0.0958 - val_accuracy: 0.9812\n"
|
||||
"[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n",
|
||||
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
|
||||
" [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<tensorflow.python.keras.callbacks.History at 0x228eac95ac0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.RMSprop(), metrics=['accuracy'])\n",
|
||||
"\n",
|
||||
"model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1,\n",
|
||||
" validation_data=(x_test, y_test))"
|
||||
"print(y_train[:10])"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -1100,8 +1067,61 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Test loss: 0.0757974311709404\n",
|
||||
"Test accuracy: 0.9810000061988831\n"
|
||||
"Epoch 1/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.2807 - accuracy: 0.9158 - val_loss: 0.1509 - val_accuracy: 0.9550\n",
|
||||
"Epoch 2/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.1242 - accuracy: 0.9619 - val_loss: 0.1076 - val_accuracy: 0.9677\n",
|
||||
"Epoch 3/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.0812 - accuracy: 0.9752 - val_loss: 0.0862 - val_accuracy: 0.9723\n",
|
||||
"Epoch 4/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.0587 - accuracy: 0.9820 - val_loss: 0.0823 - val_accuracy: 0.9727\n",
|
||||
"Epoch 5/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.0416 - accuracy: 0.9870 - val_loss: 0.0735 - val_accuracy: 0.9763\n",
|
||||
"Epoch 6/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.0318 - accuracy: 0.9897 - val_loss: 0.0723 - val_accuracy: 0.9761s: 0.0318 - accuracy: \n",
|
||||
"Epoch 7/10\n",
|
||||
"469/469 [==============================] - 11s 23ms/step - loss: 0.0215 - accuracy: 0.9940 - val_loss: 0.0685 - val_accuracy: 0.9792\n",
|
||||
"Epoch 8/10\n",
|
||||
"469/469 [==============================] - 11s 23ms/step - loss: 0.0189 - accuracy: 0.9943 - val_loss: 0.0705 - val_accuracy: 0.9786\n",
|
||||
"Epoch 9/10\n",
|
||||
"469/469 [==============================] - 11s 24ms/step - loss: 0.0148 - accuracy: 0.9957 - val_loss: 0.0674 - val_accuracy: 0.9790\n",
|
||||
"Epoch 10/10\n",
|
||||
"469/469 [==============================] - 11s 23ms/step - loss: 0.0092 - accuracy: 0.9978 - val_loss: 0.0706 - val_accuracy: 0.9798\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<tensorflow.python.keras.callbacks.History at 0x1bde5f96b50>"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(), metrics=['accuracy'])\n",
|
||||
"\n",
|
||||
"model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1,\n",
|
||||
" validation_data=(x_test, y_test))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Test loss: 0.07055816799402237\n",
|
||||
"Test accuracy: 0.9797999858856201\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@ -31,6 +31,8 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"* Złożenie funkcji liniowych jest funkcją liniową.\n",
|
||||
"* Głównym zadaniem funkcji aktywacji jest wprowadzenie nieliniowości do sieci neuronowej, żeby model mógł odwzorowywać nie tylko liniowe zależności między danymi.\n",
|
||||
"* Każda funkcja aktywacji ma swoje zalety i wady.\n",
|
||||
"* Różne rodzaje funkcji aktywacji nadają się do różnych zastosowań."
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user