umz21/lab/Sieci_neuronowe_Keras.ipynb
2021-06-02 10:40:42 +02:00

9.2 KiB
Raw Blame History

Uczenie maszynowe — zastosowania

Sieci neuronowe (Keras)

Keras to napisany w języku Python interfejs do platformy TensorFlow, służącej do uczenia maszynowego.

Aby z niego korzystać, trzeba zainstalować bibliotekę TensorFlow.

Instrukcja dla skryptów Pythona (pliki _.py):

Aby uruchomić TensorFlow w środowisku Jupyter, należy wykonać następujące czynności:

Przed pierwszym uruchomieniem (wystarczy wykonać tylko raz)

Instalacja biblioteki TensorFlow w środowisku Anaconda:

  1. Uruchom _Anaconda Navigator
  2. Wybierz kafelek _CMD.exe Prompt
  3. Kliknij przycisk _Launch
  4. Pojawi się konsola. Wpisz następujące polecenia, każde zatwierdzając wciśnięciem klawisza Enter:
    conda create -n tf tensorflow
    conda activate tf
    conda install pandas matplotlib
    jupyter notebook
    

Przed każdym uruchomieniem

Jeżeli chcemy korzystać z biblioteki TensorFlow, to środowisko Jupyter Notebook należy uruchomić w następujący sposób:

  1. Uruchom _Anaconda Navigator
  2. Wybierz kafelek _CMD.exe Prompt
  3. Kliknij przycisk _Launch
  4. Pojawi się konsola. Wpisz następujące polecenia, każde zatwierdzając wciśnięciem klawisza Enter:
    conda activate tf
    jupyter notebook
    

Przykład implementacji sieci neuronowej do rozpoznawania cyfr ze zbioru MNIST, według https://keras.io/examples/vision/mnist_convnet

# Konieczne importy

import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# Przygotowanie danych

num_classes = 10
input_shape = (28, 28, 1)

# podział danych na zbiory uczący i testowy
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# skalowanie wartości pikseli do przedziału [0, 1]
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# upewnienie się, że obrazy mają wymiary (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")

# konwersja danych kategorycznych na binarne
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-d9ae37c68de4> in <module>
      5 
      6 # podział danych na zbiory uczący i testowy
----> 7 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
      8 
      9 # skalowanie wartości pikseli do przedziału [0, 1]

NameError: name 'keras' is not defined
# Stworzenie modelu

model = keras.Sequential(
    [
        keras.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 26, 26, 32)        320       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 11, 11, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0         
_________________________________________________________________
flatten (Flatten)            (None, 1600)              0         
_________________________________________________________________
dropout (Dropout)            (None, 1600)              0         
_________________________________________________________________
dense (Dense)                (None, 10)                16010     
=================================================================
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0
_________________________________________________________________
# Uczenie modelu

batch_size = 128
epochs = 15

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.fit(x_train, y_train, epochs=1, batch_size=batch_size, epochs=epochs, validation_split=0.1)
422/422 [==============================] - 38s 91ms/step - loss: 0.0556 - accuracy: 0.9826 - val_loss: 0.0412 - val_accuracy: 0.9893
<tensorflow.python.keras.callbacks.History at 0x1a50b35a070>
# Ewaluacja modelu

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
Test loss: 0.03675819933414459
Test accuracy: 0.988099992275238