umz21/lab/01_Python.ipynb
Paweł Skórzewski 506043a218 Poprawka w lab. 1
2021-03-14 17:34:56 +01:00

2855 lines
55 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Uczenie maszynowe 2020/2021 laboratoria\n",
"### 3 marca 2021\n",
"# 1. Python listy składane, indeksowanie, biblioteka _NumPy_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Listy składane (*List comprehension*)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]\n"
]
}
],
"source": [
"lista = []\n",
"for x in range(1, 11):\n",
" lista.append(x ** 2)\n",
" \n",
"print(lista)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]\n"
]
}
],
"source": [
"lista = [x ** 2 for x in range(1, 11)]\n",
"print(lista)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przypuśćmy, że mamy dane zdanie i chcemy utworzyć listę, która będzie zawierać długości kolejnych wyrazów tego zdania. Możemy to zrobić w następujący sposób:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[4, 16, 36, 64, 100]\n"
]
}
],
"source": [
"lista = []\n",
"for i in range(1, 11):\n",
" if i % 2 == 0:\n",
" lista.append(i ** 2)\n",
" \n",
"print(lista)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[4, 16, 36, 64, 100]\n"
]
}
],
"source": [
"lista = [i ** 2 for i in range(1, 11) if i % 2 == 0]\n",
"print(lista)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(range(1, 11))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tracz tarł tarcicę tak takt w takt jak takt w takt tarcicę tartak tarł\n"
]
}
],
"source": [
"zdanie = 'tracz tarł tarcicę tak takt w takt jak takt w takt tarcicę tartak tarł'\n",
"print(zdanie)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['tracz', 'tarł', 'tarcicę', 'tak', 'takt', 'w', 'takt', 'jak', 'takt', 'w', 'takt', 'tarcicę', 'tartak', 'tarł']\n"
]
}
],
"source": [
"wyrazy = zdanie.split()\n",
"print(wyrazy)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 4, 7, 3, 4, 1, 4, 3, 4, 1, 4, 7, 6, 4]\n"
]
}
],
"source": [
"dlugosci_wyrazow = []\n",
"for wyraz in wyrazy:\n",
" dlugosci_wyrazow.append(len(wyraz))\n",
" \n",
"print(dlugosci_wyrazow)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 4, 7, 3, 4, 1, 4, 3, 4, 1, 4, 7, 6, 4]\n"
]
}
],
"source": [
"dlugosci_wyrazow = [len(wyraz) for wyraz in wyrazy]\n",
"print(dlugosci_wyrazow)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 4, 7, 3, 4, 1, 4, 3, 4, 1, 4, 7, 6, 4]\n"
]
}
],
"source": [
"zdanie = 'tracz tarł tarcicę tak takt w takt jak takt w takt tarcicę tartak tarł'\n",
"wyrazy = zdanie.split()\n",
"dlugosci_wyrazow = []\n",
"for wyraz in wyrazy:\n",
" dlugosci_wyrazow.append(len(wyraz))\n",
" \n",
"print(dlugosci_wyrazow)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Możemy to też zrobić bardziej „pythonicznie”, przy użyciu list składanych:"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 4, 7, 3, 4, 1, 4, 3, 4, 1, 4, 7, 6, 4]\n"
]
}
],
"source": [
"zdanie = 'tracz tarł tarcicę tak takt w takt jak takt w takt tarcicę tartak tarł'\n",
"dlugosci_wyrazow = [len(wyraz) for wyraz in zdanie.split()]\n",
"\n",
"print(dlugosci_wyrazow)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jeżeli chcemy, żeby był sprawdzany dodatkowy warunek, np. chcemy pomijać wyraz „takt”, to wciąż możemy użyć list składanych:"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 4, 7, 3, 1, 3, 1, 7, 6, 4]\n"
]
}
],
"source": [
"zdanie = 'tracz tarł tarcicę tak takt w takt jak takt w takt tarcicę tartak tarł'\n",
"wyrazy = zdanie.split()\n",
"dlugosci_wyrazow = [len(wyraz) for wyraz in wyrazy if wyraz != 'takt']\n",
"print(dlugosci_wyrazow)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indeksowanie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wszystkie listy i krotki w Pythonie, w tym łańcuchy (które trakowane są jak krotki znaków), są indeksowane od 0:"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a\n",
"e\n"
]
}
],
"source": [
"napis = 'abcde'\n",
"print(napis[0]) # 'a'\n",
"print(napis[4]) # 'e'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Indeksy możemy liczyć również „od końca”:"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"e\n",
"d\n",
"a\n"
]
}
],
"source": [
"napis = 'abcde'\n",
"print(napis[-1]) # 'e' („ostatni”)\n",
"print(napis[-2]) # 'd' („drugi od końca”)\n",
"print(napis[-5]) # 'a' („piąty od końca”)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Łańcuchy możemy też „kroić na plasterki” (_slicing_):"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bcd\n",
"b\n",
"cd\n",
"bcd\n",
"de\n",
"abc\n",
"abcde\n"
]
}
],
"source": [
"napis = 'abcde'\n",
"print(napis[1:4]) # 'bcd' („znaki od 1. włącznie do 4. wyłącznie”)\n",
"print(napis[1:2]) # 'b' (to samo co `napis[1]`)\n",
"print(napis[-3:-1]) # 'cd' (kroić można też stosując indeksowanie od końca)\n",
"print(napis[1:-1]) # 'bcd' (możemy nawet mieszać te dwa sposoby indeksowania)\n",
"print(napis[3:]) # 'de' (jeżeli koniec przedziału nie jest podany, to kroimy do samego końca łańcucha)\n",
"print(napis[:3]) # 'abc' (jeżeli początek przedziału nie jest podany, to kroimy od początku łańcucha)\n",
"print(napis[:]) # 'abcde' (kopia całego napisu)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"abcde\n"
]
}
],
"source": [
"print(napis[:])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Biblioteka _NumPy_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Tablice"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Głównym obiektem w NumPy jest **jednorodna**, **wielowymiarowa** tablica. Przykładem takiej tablicy jest macierz `x`.\n",
"\n",
"Macierz $x =\n",
" \\begin{pmatrix}\n",
" 1 & 2 & 3 \\\\\n",
" 4 & 5 & 6 \\\\\n",
" 7 & 8 & 9\n",
" \\end{pmatrix}$\n",
"można zapisać jako:"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [4 5 6]\n",
" [7 8 9]]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
"\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [4 5 6]\n",
" [7 8 9]]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"x = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 1. 2. 3. -4.5 5. ]\n",
" [ 10. 9. -8. -13. 0.39]]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"y = np.array([[1, 2, 3, -4.5, 5], [10, 9, -8, -13, 0.39]])\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3, 3)\n"
]
}
],
"source": [
"print(x.shape)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 5)\n"
]
}
],
"source": [
"print(y.shape)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 1. 2. ]\n",
" [ 3. -4.5 ]\n",
" [ 5. 10. ]\n",
" [ 9. -8. ]\n",
" [-13. 0.39]]\n"
]
}
],
"source": [
"z = y.reshape(5, 2)\n",
"print(z)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(5, 2)\n"
]
}
],
"source": [
"print(z.shape)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 1. 2. 3. -4.5 5. ]\n",
" [ 10. 9. -8. -13. 0.39]]\n"
]
}
],
"source": [
"w = z.reshape(2, 5)\n",
"print(w)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Najczęsciej używane metody tablic typu `array`:"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 5)\n",
"[[ 1. 2. ]\n",
" [ 3. -4.5 ]\n",
" [ 5. 10. ]\n",
" [ 9. -8. ]\n",
" [-13. 0.39]]\n",
"(5, 2)\n"
]
}
],
"source": [
"print(y.shape)\n",
"\n",
"z = y.reshape((5, 2))\n",
"print(z)\n",
"print(z.shape)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 1. 2. ]\n",
" [ 3. -4.5 ]\n",
" [ 5. 10. ]\n",
" [ 9. -8. ]\n",
" [-13. 0.39]]\n"
]
}
],
"source": [
"print(z)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 3. -1.5 15. 1. -12.61]\n"
]
}
],
"source": [
"print(z.sum(axis=1))"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [4 5 6]\n",
" [7 8 9]]\n",
"[2. 5. 8.]\n"
]
}
],
"source": [
"print(x)\n",
"print(x.mean(axis=1))"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 1 2 3 4 5 6 7 8 9 10]\n"
]
}
],
"source": [
"lista = list(range(1, 11))\n",
"A = np.array(lista)\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n",
"[ 1 2 3 4 5 6 7 8 9 10]\n"
]
}
],
"source": [
"lista = list(range(1, 11))\n",
"print(lista)\n",
"A = np.array(lista)\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 1 2 3 4 5 6 7 8 9 10]\n"
]
}
],
"source": [
"A = np.arange(1, 11)\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([12, 15, 18])"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.sum(axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2., 5., 8.])"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.mean(axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Do tworzenia sekwencji liczbowych jako obiekty typu `array` należy wykorzystać funkcję `arange`."
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.arange(10)"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.arange(5, 15)"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 5. , 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9],\n",
" [ 6. , 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9],\n",
" [ 7. , 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9],\n",
" [ 8. , 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9],\n",
" [ 9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9],\n",
" [10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9],\n",
" [11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9],\n",
" [12. , 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9],\n",
" [13. , 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9],\n",
" [14. , 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9]])"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.arange(5, 15, 0.1).reshape(10, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Kształt tablicy można zmienić za pomocą metody `reshape`:"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 1 2 3 4 5 6 7 8 9 10 11 12]\n",
"[[ 1 2 3 4]\n",
" [ 5 6 7 8]\n",
" [ 9 10 11 12]]\n"
]
}
],
"source": [
"x = np.arange(1, 13)\n",
"print(x)\n",
"y = x.reshape(3, 4)\n",
"print(y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Funkcją podobną do `arange` jest `linspace`, która wypełnia wektor określoną liczbą elementów z przedziału o równych automatycznie obliczonych odstępach (w `arange` należy podać rozmiar kroku):"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0. 0.22222222 0.44444444 0.66666667 0.88888889 1.11111111\n",
" 1.33333333 1.55555556 1.77777778 2. ]\n"
]
}
],
"source": [
"x = np.linspace(0, 2, 10)\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dodatkowe informacje o funkcjach NumPy uzyskuje się za pomocą polecenia `help(nazwa_funkcji)`:"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function shape in module numpy:\n",
"\n",
"shape(a)\n",
" Return the shape of an array.\n",
" \n",
" Parameters\n",
" ----------\n",
" a : array_like\n",
" Input array.\n",
" \n",
" Returns\n",
" -------\n",
" shape : tuple of ints\n",
" The elements of the shape tuple give the lengths of the\n",
" corresponding array dimensions.\n",
" \n",
" See Also\n",
" --------\n",
" alen\n",
" ndarray.shape : Equivalent array method.\n",
" \n",
" Examples\n",
" --------\n",
" >>> np.shape(np.eye(3))\n",
" (3, 3)\n",
" >>> np.shape([[1, 2]])\n",
" (1, 2)\n",
" >>> np.shape([0])\n",
" (1,)\n",
" >>> np.shape(0)\n",
" ()\n",
" \n",
" >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])\n",
" >>> np.shape(a)\n",
" (2,)\n",
" >>> a.shape\n",
" (2,)\n",
"\n"
]
}
],
"source": [
"help(np.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tablice mogą składać się z danych różnych typów (ale tylko jednego typu danych równocześnie, stąd jednorodność)."
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"float64\n",
"[0.1 0.2 0.3]\n",
"float64\n",
"float64\n"
]
}
],
"source": [
"x = np.array([1, 2, 3, 0.5])\n",
"print(x.dtype)\n",
"x = np.array([0.1, 0.2, 0.3])\n",
"print(x)\n",
"print(x.dtype)\n",
"x = np.array([1, 2, 3], dtype='float64')\n",
"print(x.dtype)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tworzenie tablic składających się z samych zer lub jedynek umożliwiają funkcje `zeros` oraz `ones`:"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0. 0. 0. 0.]\n",
" [0. 0. 0. 0.]\n",
" [0. 0. 0. 0.]]\n"
]
}
],
"source": [
"x = np.zeros([3,4])\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1. 1. 1. 1.]\n",
" [1. 1. 1. 1.]\n",
" [1. 1. 1. 1.]]\n"
]
}
],
"source": [
"y = np.ones([3,4])\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1. 1. 1. 1.]\n",
" [1. 1. 1. 1.]\n",
" [1. 1. 1. 1.]]\n"
]
}
],
"source": [
"print(x + y)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 0 1 2]\n",
" [ 3 4 5]\n",
" [ 6 7 8]\n",
" [ 9 10 11]]\n"
]
}
],
"source": [
"x = np.arange(12).reshape(4, 3)\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 5 6 7]\n",
" [ 8 9 10]\n",
" [11 12 13]\n",
" [14 15 16]]\n"
]
}
],
"source": [
"y = np.arange(5, 17).reshape(4, 3)\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 0 6 14]\n",
" [ 24 36 50]\n",
" [ 66 84 104]\n",
" [126 150 176]]\n"
]
}
],
"source": [
"print(x * y)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0 1 2 3]\n",
" [4 5 6 7]]\n"
]
}
],
"source": [
"A = np.arange(8).reshape(2, 4)\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 1 2 3]\n",
" [ 4 5 6]\n",
" [ 7 8 9]\n",
" [10 11 12]]\n"
]
}
],
"source": [
"B = np.arange(1, 13).reshape(4, 3)\n",
"print(B)"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 4) (4, 3)\n"
]
}
],
"source": [
"print(A.shape, B.shape)"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 48 54 60]\n",
" [136 158 180]]\n",
"(2, 3)\n"
]
}
],
"source": [
"C = np.matmul(A, B)\n",
"print(C)\n",
"print(C.shape)"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "operands could not be broadcast together with shapes (2,4) (4,3) ",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-102-a4cedde81ed0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mA\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mB\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,4) (4,3) "
]
}
],
"source": [
"A * B"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 4)",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-103-89ae99960b6e>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mA\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mC\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mValueError\u001b[0m: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 4)"
]
}
],
"source": [
"np.matmul(A, C)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podstawowe operacje arytmetyczne"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Operatory arytmetyczne na tablicach w NumPy działają **element po elemencie**."
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [1 2 3]]\n"
]
}
],
"source": [
"A = np.array([[1, 2, 3], [1, 2, 3]])\n",
"B = np.array([[4, 5, 6], [7, 8, 9]])\n",
" \n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[4 5 6]\n",
" [7 8 9]]\n"
]
}
],
"source": [
"print(B)"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[-3 -3 -3]\n",
" [-6 -6 -6]]\n"
]
}
],
"source": [
"print(A - B)"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[3 3 3]\n",
" [6 6 6]]\n"
]
}
],
"source": [
"print(B - A)"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 4 10 18]\n",
" [ 7 16 27]]\n"
]
}
],
"source": [
"print(A * B)"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-109-04c68bb92949>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mA\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mB\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mValueError\u001b[0m: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)"
]
}
],
"source": [
"np.matmul(A, B)"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 3)\n",
"(3, 4)\n",
"\n",
"[[1 2 3]\n",
" [1 2 3]]\n",
"[[1 2 3 4]\n",
" [9 8 7 6]\n",
" [2 4 6 7]]\n",
"[[25 30 35 37]\n",
" [25 30 35 37]]\n",
"\n",
"(2, 3) (3, 4)\n",
"(2, 4)\n"
]
}
],
"source": [
"print(A.shape)\n",
"B = np.array([[1, 2, 3, 4], [9, 8, 7, 6], [2, 4, 6, 7]])\n",
"print(B.shape)\n",
"\n",
"print()\n",
"\n",
"print(A)\n",
"print(B)\n",
"C = np.matmul(A, B)\n",
"print(C)\n",
"\n",
"print()\n",
"\n",
"print(A.shape, B.shape)\n",
"print(C.shape)"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[25, 30, 35, 37],\n",
" [25, 30, 35, 37]])"
]
},
"execution_count": 111,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.dot(A, B)"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2. 3. 4.]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"a = np.array([3, 4, 5])\n",
"b = np.ones(3)\n",
"print(a - b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Za mnożenie macierzy odpowiada funkcja `dot` (nie operator `*`):"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2]\n",
" [3 4]]\n"
]
}
],
"source": [
"a = np.array([[1, 2], [3, 4]])\n",
"print(a)"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2]\n",
" [3 4]]\n"
]
}
],
"source": [
"b = np.array([[1, 2], [3, 4]])\n",
"print(b)"
]
},
{
"cell_type": "code",
"execution_count": 115,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1, 4],\n",
" [ 9, 16]])"
]
},
"execution_count": 115,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a * b"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 7, 10],\n",
" [15, 22]])"
]
},
"execution_count": 116,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.dot(a,b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przykłady innych operacji dodawania i mnożenia:"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[5., 5.],\n",
" [5., 5.]])"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.zeros((2, 2), dtype='float')\n",
"a += 5\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[25., 25.],\n",
" [25., 25.]])"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a *= 5\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[50., 50.],\n",
" [50., 50.]])"
]
},
"execution_count": 119,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a + a"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sklejanie tablic:"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 2, 3, 4, 5, 6, 7, 8, 9])"
]
},
"execution_count": 120,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.array([1, 2, 3])\n",
"b = np.array([4, 5, 6])\n",
"c = np.array([7, 8, 9])\n",
"np.hstack([a, b, c])"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 2, 3],\n",
" [4, 5, 6],\n",
" [7, 8, 9]])"
]
},
"execution_count": 121,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.vstack([a, b, c])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Typowe funkcje matematyczne:"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([3.14159265, 4.44288294, 5.44139809, 6.28318531])"
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.arange(1, 5)\n",
"np.sqrt(x) * np.pi"
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"16"
]
},
"execution_count": 123,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"2**4"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"16"
]
},
"execution_count": 124,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.power(2, 4)"
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 125,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.log(np.e)"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 126,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.arange(5)\n",
"x.max() - x.min()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Indeksy i zakresy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tablice jednowymiarowe zachowują sie podobnie do zwykłych list pythonowych."
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2, 3])"
]
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.arange(10)\n",
"a[2:4]"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 2, 4, 6, 8])"
]
},
"execution_count": 128,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a[:10:2] # elementy do 10., co drugi element"
]
},
{
"cell_type": "code",
"execution_count": 130,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])"
]
},
"execution_count": 130,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a[::-1] # wszytkie elementy tablicy `a`, ale w odwróconej kolejności"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tablice wielowymiarowe mają po jednym indeksie na wymiar:"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0, 1, 2, 3],\n",
" [ 4, 5, 6, 7],\n",
" [ 8, 9, 10, 11]])"
]
},
"execution_count": 131,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.arange(12).reshape(3, 4)\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"11"
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[2, 3] # wiersz 2, kolumna 3"
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 5, 9])"
]
},
"execution_count": 134,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[:, 1] # kolumna 1"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([4, 5, 6, 7])"
]
},
"execution_count": 135,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[1, :] # wiersz 1"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 4, 5, 6, 7],\n",
" [ 8, 9, 10, 11]])"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[1:3, :] # wiersze od 1. włącznie do 3. wyłącznie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Warunki"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Warunki pozwalają na selekcję elementów tablicy."
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2, 2, 2, 3, 3, 3])"
]
},
"execution_count": 138,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])\n",
"a[a > 1]"
]
},
{
"cell_type": "code",
"execution_count": 139,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([3, 3, 3])"
]
},
"execution_count": 139,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a[a == 3]"
]
},
{
"cell_type": "code",
"execution_count": 141,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([0, 1, 2, 3, 4, 5], dtype=int64),)"
]
},
"execution_count": 141,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.where(a < 3)"
]
},
{
"cell_type": "code",
"execution_count": 142,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 2, 3, 4, 5], dtype=int64)"
]
},
"execution_count": 142,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.where(a < 3)[0]"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([], dtype=int64),)"
]
},
"execution_count": 143,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.where(a > 9)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pętle i wypisywanie"
]
},
{
"cell_type": "code",
"execution_count": 145,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0 1 2 3]\n",
"[4 5 6 7]\n",
"[ 8 9 10 11]\n"
]
}
],
"source": [
"for row in x:\n",
" print(row)"
]
},
{
"cell_type": "code",
"execution_count": 146,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"6\n",
"7\n",
"8\n",
"9\n",
"10\n",
"11\n"
]
}
],
"source": [
"for row in x:\n",
" for element in row:\n",
" print(element)"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"6\n",
"7\n",
"8\n",
"9\n",
"10\n",
"11\n"
]
}
],
"source": [
"# Operacja `.flat` \"spłaszcza\" macierz\n",
"for element in x.flat:\n",
" print(element)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Liczby losowe"
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([9, 7, 1, 6, 5])"
]
},
"execution_count": 148,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.random.randint(0, 10, 5) # Tablica złożona z 5 liczb całkowitych wylosowanych z zakresu od 0 do 10"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.5127886 , -0.4507017 , -1.06312973, 1.22150748, 0.27790976])"
]
},
"execution_count": 149,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.random.normal(0, 1, 5) # Tablica złożona z 5 liczb wylosowanych z rozkładu normalnego (0, 1)"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1.34207418, 1.70197756, 1.16472435, 0.57619858, 1.22382641])"
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.random.uniform(0, 2, 5) # Tablica złożona z 5 liczb wylosowanych z rozkładu jednostajnego na przedziale (0, 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Macierze"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"NumPy jest pakietem wykorzystywanym do obliczeń w dziedzinie algebry liniowej, co jeszcze szczególnie przydatne w uczeniu maszynowym. \n",
"\n",
"Wektor o wymiarach $1 \\times N$ \n",
"$$\n",
" x =\n",
" \\begin{pmatrix}\n",
" x_{1} \\\\\n",
" x_{2} \\\\\n",
" \\vdots \\\\\n",
" x_{N}\n",
" \\end{pmatrix} \n",
"$$\n",
"\n",
"i jego transpozycję $x^\\top = (x_{1}, x_{2},\\ldots,x_{N})$ można wyrazić w Pythonie w następujący sposób:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Transpozycja** to operacja zamiany wierszy na kolumny i na odwrót."
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0 1 2]\n",
" [3 4 5]\n",
" [6 7 8]]\n"
]
}
],
"source": [
"A = np.arange(9).reshape(3, 3)\n",
"print(A)"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0 3 6]\n",
" [1 4 7]\n",
" [2 5 8]]\n"
]
}
],
"source": [
"print(A.T)"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3, 1)"
]
},
"execution_count": 151,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"x = np.array([[1, 2, 3]]).T\n",
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 3)"
]
},
"execution_count": 152,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xt = x.T\n",
"xt.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Macierz kolumnowa** w NumPy.\n",
"$$X =\n",
" \\begin{pmatrix}\n",
" 3 \\\\\n",
" 4 \\\\\n",
" 5 \\\\\n",
" 6 \n",
" \\end{pmatrix}$$"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[3],\n",
" [4],\n",
" [5],\n",
" [6]])"
]
},
"execution_count": 153,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.array([[3,4,5,6]]).T\n",
"x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Macierz wierszowa** w NumPy.\n",
"$$ X =\n",
" \\begin{pmatrix}\n",
" 3 & 4 & 5 & 6\n",
" \\end{pmatrix}$$"
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[3, 4, 5, 6]])"
]
},
"execution_count": 154,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.array([[3,4,5,6]])\n",
"x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Oprócz obiektów typu `array` istnieje wyspecjalizowany obiekt `matrix`, dla którego operacje `*` (mnożenie) oraz `**-1` (odwracanie) są określone w sposób właściwy dla macierzy (w przeciwieństwie do operacji elementowych dla obiektów `array`)."
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [4 5 6]\n",
" [7 8 9]]\n"
]
}
],
"source": [
"x = np.array([1,2,3,4,5,6,7,8,9]).reshape(3,3)\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[4 6 3]\n",
" [8 7 1]\n",
" [3 0 3]]\n"
]
}
],
"source": [
"y = np.array([4,6,3,8,7,1,3,0,3]).reshape(3,3)\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
"X = np.matrix(x)\n",
"Y = np.matrix(y)"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 4 12 9]\n",
" [32 35 6]\n",
" [21 0 27]]\n"
]
}
],
"source": [
"print(x * y) # Tablice np.array mnożone są element po elemencie"
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 29 20 14]\n",
" [ 74 59 35]\n",
" [119 98 56]]\n"
]
}
],
"source": [
"print(X * Y) # Macierze np.matrix mnożone są macierzowo"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 29 20 14]\n",
" [ 74 59 35]\n",
" [119 98 56]]\n"
]
}
],
"source": [
"print(np.matmul(x, y))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Wyznacznik macierzy**"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"33.000000000000014"
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.array([[3,-9],[2,5]])\n",
"np.linalg.det(a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Macierz odwrotna**"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-4, -2],\n",
" [ 5, 5]])"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A = np.array([[-4,-2],[5,5]])\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-0.5, -0.2],\n",
" [ 0.5, 0.4]])"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"invA = np.linalg.inv(A)\n",
"invA"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0.],\n",
" [0., 1.]])"
]
},
"execution_count": 168,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.round(np.dot(A, invA))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(ponieważ $AA^{-1} = A^{-1}A = I$)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Wartości i wektory własne**"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 0, 0],\n",
" [0, 2, 0],\n",
" [0, 0, 3]])"
]
},
"execution_count": 169,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.diag((1, 2, 3))\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": 170,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1. 2. 3.]\n",
"[[1. 0. 0.]\n",
" [0. 1. 0.]\n",
" [0. 0. 1.]]\n"
]
}
],
"source": [
"w, v = np.linalg.eig(a)\n",
"print(w) # wartości własne\n",
"print(v) # wektory własne"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Zadania"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.1 (1 pkt)\n",
"\n",
"Dla danej listy `input_list` zawierającej liczby utwórz nową listę `output_list`, która będzie zawierała kwadraty liczb dodatnich z `input_list`. Użyj _list comprehension_!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Przykładowe dane\n",
"\n",
"input_list = [34.6, -203.4, 44.9, 68.3, -12.2, 44.6, 12.7]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.2 (1 pkt)\n",
"\n",
"Za pomocą jednowierszowego polecenia utwórz następującą macierz jako obiekt typu `array`:\n",
"$$A = \\begin{pmatrix}\n",
"1 & 2 & \\cdots & 10 \\\\\n",
"11 & 12 & \\cdots & 20 \\\\\n",
"\\vdots & \\ddots & \\ddots & \\vdots \\\\\n",
"41 & 42 & \\cdots & 50 \n",
"\\end{pmatrix}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.3 (1 pkt)\n",
"\n",
"Dla macierzy $A$ z zadania 1.2:\n",
" * określ liczbę elementów, kolumn i wierszy,\n",
" * stwórz wektory średnich po wierszach oraz po kolumnach,\n",
" * wypisz jej trzecią kolumnę,\n",
" * wypisz jej czwarty wiersz.\n",
" \n",
"Użyj odpowiednich metod obiektu `array`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.4 (1 pkt)\n",
"\n",
"Utwórz macierze\n",
"$$ A = \\begin{pmatrix}\n",
"0 & 4 & -2 \\\\\n",
"-4 & -3 & 0\n",
"\\end{pmatrix} $$\n",
"$$ B = \\begin{pmatrix}\n",
"0 & 1 \\\\\n",
"1 & -1 \\\\\n",
"2 & 3\n",
"\\end{pmatrix} $$\n",
"oraz wektor\n",
"$$ x = \\begin{pmatrix}\n",
"2 \\\\\n",
"1 \\\\\n",
"0\n",
"\\end{pmatrix} $$\n",
"\n",
"Oblicz:\n",
" * iloczyn macierzy $A$ z wektorem $x$ \n",
" * iloczyn macierzy $A \\cdot B$\n",
" * wyznacznik $\\det(A \\cdot B)$\n",
" * wynik działania $(A \\cdot B)^\\top - B^\\top \\cdot A^\\top$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.5 (1 pkt)\n",
"\n",
"Czym różni się operacja `A**-1` dla obiektów typu `array` i `matrix`? Pokaż na przykładzie."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie 1.6 (1 pkt)\n",
"\n",
"Dla macierzy $X = \\left[\n",
" \\begin{array}{rrr}\n",
" 1 & 2 & 3\\\\\n",
" 1 & 3 & 6 \\\\\n",
" \\end{array}\n",
" \\right]$ oraz wektora $y = \\left[\n",
" \\begin{array}{r}\n",
" 5 \\\\\n",
" 6 \\\\\n",
" \\end{array}\n",
" \\right]$ oblicz wynikowy wektor: \n",
"$$ \\theta = (X^\\top \\, X)^{-1} \\, X^\\top \\, y \\, . $$\n",
"Wykonaj te same obliczenia raz na obiektach typu `array`, a raz na obiektach typu `matrix`.\n",
"W przypadku obiektów typu `matrix` zastosuj możliwie krótki zapis. "
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"livereveal": {
"start_slideshow_at": "selected",
"theme": "amu"
}
},
"nbformat": 4,
"nbformat_minor": 4
}