agabka/.ipynb_checkpoints/projekt-checkpoint.ipynb
ag.gabka@gmail.com 6bdf024137 projekt.ipynb
2024-04-04 22:23:05 +02:00

1046 lines
121 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "7ce53ad1",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "73edef6d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Patient Id</th>\n",
" <th>Age</th>\n",
" <th>Gender</th>\n",
" <th>Air Pollution</th>\n",
" <th>Alcohol use</th>\n",
" <th>Dust Allergy</th>\n",
" <th>OccuPational Hazards</th>\n",
" <th>Genetic Risk</th>\n",
" <th>chronic Lung Disease</th>\n",
" <th>Balanced Diet</th>\n",
" <th>...</th>\n",
" <th>Fatigue</th>\n",
" <th>Weight Loss</th>\n",
" <th>Shortness of Breath</th>\n",
" <th>Wheezing</th>\n",
" <th>Swallowing Difficulty</th>\n",
" <th>Clubbing of Finger Nails</th>\n",
" <th>Frequent Cold</th>\n",
" <th>Dry Cough</th>\n",
" <th>Snoring</th>\n",
" <th>Level</th>\n",
" </tr>\n",
" <tr>\n",
" <th>index</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>P1</td>\n",
" <td>33</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>Low</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>P10</td>\n",
" <td>17</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" <td>6</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>2</td>\n",
" <td>Medium</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>P100</td>\n",
" <td>35</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>4</td>\n",
" <td>6</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>7</td>\n",
" <td>9</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>2</td>\n",
" <td>High</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>P1000</td>\n",
" <td>37</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>5</td>\n",
" <td>High</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>P101</td>\n",
" <td>46</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>8</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>...</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>High</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 25 columns</p>\n",
"</div>"
],
"text/plain": [
" Patient Id Age Gender Air Pollution Alcohol use Dust Allergy \\\n",
"index \n",
"0 P1 33 1 2 4 5 \n",
"1 P10 17 1 3 1 5 \n",
"2 P100 35 1 4 5 6 \n",
"3 P1000 37 1 7 7 7 \n",
"4 P101 46 1 6 8 7 \n",
"\n",
" OccuPational Hazards Genetic Risk chronic Lung Disease \\\n",
"index \n",
"0 4 3 2 \n",
"1 3 4 2 \n",
"2 5 5 4 \n",
"3 7 6 7 \n",
"4 7 7 6 \n",
"\n",
" Balanced Diet ... Fatigue Weight Loss Shortness of Breath \\\n",
"index ... \n",
"0 2 ... 3 4 2 \n",
"1 2 ... 1 3 7 \n",
"2 6 ... 8 7 9 \n",
"3 7 ... 4 2 3 \n",
"4 7 ... 3 2 4 \n",
"\n",
" Wheezing Swallowing Difficulty Clubbing of Finger Nails \\\n",
"index \n",
"0 2 3 1 \n",
"1 8 6 2 \n",
"2 2 1 4 \n",
"3 1 4 5 \n",
"4 1 4 2 \n",
"\n",
" Frequent Cold Dry Cough Snoring Level \n",
"index \n",
"0 2 3 4 Low \n",
"1 1 7 2 Medium \n",
"2 6 7 2 High \n",
"3 6 7 5 High \n",
"4 4 2 3 High \n",
"\n",
"[5 rows x 25 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane = pd.read_csv(r'C:\\Users\\HP\\Desktop\\podyplomówka\\cancer_patient_data_sets.csv', index_col = 0)\n",
"dane.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1831fdd7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 1000 entries, 0 to 999\n",
"Data columns (total 25 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Patient Id 1000 non-null object\n",
" 1 Age 1000 non-null int64 \n",
" 2 Gender 1000 non-null int64 \n",
" 3 Air Pollution 1000 non-null int64 \n",
" 4 Alcohol use 1000 non-null int64 \n",
" 5 Dust Allergy 1000 non-null int64 \n",
" 6 OccuPational Hazards 1000 non-null int64 \n",
" 7 Genetic Risk 1000 non-null int64 \n",
" 8 chronic Lung Disease 1000 non-null int64 \n",
" 9 Balanced Diet 1000 non-null int64 \n",
" 10 Obesity 1000 non-null int64 \n",
" 11 Smoking 1000 non-null int64 \n",
" 12 Passive Smoker 1000 non-null int64 \n",
" 13 Chest Pain 1000 non-null int64 \n",
" 14 Coughing of Blood 1000 non-null int64 \n",
" 15 Fatigue 1000 non-null int64 \n",
" 16 Weight Loss 1000 non-null int64 \n",
" 17 Shortness of Breath 1000 non-null int64 \n",
" 18 Wheezing 1000 non-null int64 \n",
" 19 Swallowing Difficulty 1000 non-null int64 \n",
" 20 Clubbing of Finger Nails 1000 non-null int64 \n",
" 21 Frequent Cold 1000 non-null int64 \n",
" 22 Dry Cough 1000 non-null int64 \n",
" 23 Snoring 1000 non-null int64 \n",
" 24 Level 1000 non-null object\n",
"dtypes: int64(23), object(2)\n",
"memory usage: 203.1+ KB\n"
]
}
],
"source": [
"dane.info()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "af7da17c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Age</th>\n",
" <td>1000.0</td>\n",
" <td>37.174</td>\n",
" <td>12.005493</td>\n",
" <td>14.0</td>\n",
" <td>27.75</td>\n",
" <td>36.0</td>\n",
" <td>45.0</td>\n",
" <td>73.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Gender</th>\n",
" <td>1000.0</td>\n",
" <td>1.402</td>\n",
" <td>0.490547</td>\n",
" <td>1.0</td>\n",
" <td>1.00</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Air Pollution</th>\n",
" <td>1000.0</td>\n",
" <td>3.840</td>\n",
" <td>2.030400</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>6.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Alcohol use</th>\n",
" <td>1000.0</td>\n",
" <td>4.563</td>\n",
" <td>2.620477</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>5.0</td>\n",
" <td>7.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Dust Allergy</th>\n",
" <td>1000.0</td>\n",
" <td>5.165</td>\n",
" <td>1.980833</td>\n",
" <td>1.0</td>\n",
" <td>4.00</td>\n",
" <td>6.0</td>\n",
" <td>7.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OccuPational Hazards</th>\n",
" <td>1000.0</td>\n",
" <td>4.840</td>\n",
" <td>2.107805</td>\n",
" <td>1.0</td>\n",
" <td>3.00</td>\n",
" <td>5.0</td>\n",
" <td>7.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Genetic Risk</th>\n",
" <td>1000.0</td>\n",
" <td>4.580</td>\n",
" <td>2.126999</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>5.0</td>\n",
" <td>7.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>chronic Lung Disease</th>\n",
" <td>1000.0</td>\n",
" <td>4.380</td>\n",
" <td>1.848518</td>\n",
" <td>1.0</td>\n",
" <td>3.00</td>\n",
" <td>4.0</td>\n",
" <td>6.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Balanced Diet</th>\n",
" <td>1000.0</td>\n",
" <td>4.491</td>\n",
" <td>2.135528</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Obesity</th>\n",
" <td>1000.0</td>\n",
" <td>4.465</td>\n",
" <td>2.124921</td>\n",
" <td>1.0</td>\n",
" <td>3.00</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Smoking</th>\n",
" <td>1000.0</td>\n",
" <td>3.948</td>\n",
" <td>2.495902</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>7.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Passive Smoker</th>\n",
" <td>1000.0</td>\n",
" <td>4.195</td>\n",
" <td>2.311778</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Chest Pain</th>\n",
" <td>1000.0</td>\n",
" <td>4.438</td>\n",
" <td>2.280209</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>9.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Coughing of Blood</th>\n",
" <td>1000.0</td>\n",
" <td>4.859</td>\n",
" <td>2.427965</td>\n",
" <td>1.0</td>\n",
" <td>3.00</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>9.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Fatigue</th>\n",
" <td>1000.0</td>\n",
" <td>3.856</td>\n",
" <td>2.244616</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>5.0</td>\n",
" <td>9.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Weight Loss</th>\n",
" <td>1000.0</td>\n",
" <td>3.855</td>\n",
" <td>2.206546</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>6.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Shortness of Breath</th>\n",
" <td>1000.0</td>\n",
" <td>4.240</td>\n",
" <td>2.285087</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>6.0</td>\n",
" <td>9.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wheezing</th>\n",
" <td>1000.0</td>\n",
" <td>3.777</td>\n",
" <td>2.041921</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Swallowing Difficulty</th>\n",
" <td>1000.0</td>\n",
" <td>3.746</td>\n",
" <td>2.270383</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>8.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Clubbing of Finger Nails</th>\n",
" <td>1000.0</td>\n",
" <td>3.923</td>\n",
" <td>2.388048</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>9.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Frequent Cold</th>\n",
" <td>1000.0</td>\n",
" <td>3.536</td>\n",
" <td>1.832502</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>5.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Dry Cough</th>\n",
" <td>1000.0</td>\n",
" <td>3.853</td>\n",
" <td>2.039007</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>4.0</td>\n",
" <td>6.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Snoring</th>\n",
" <td>1000.0</td>\n",
" <td>2.926</td>\n",
" <td>1.474686</td>\n",
" <td>1.0</td>\n",
" <td>2.00</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean std min 25% 50% 75% \\\n",
"Age 1000.0 37.174 12.005493 14.0 27.75 36.0 45.0 \n",
"Gender 1000.0 1.402 0.490547 1.0 1.00 1.0 2.0 \n",
"Air Pollution 1000.0 3.840 2.030400 1.0 2.00 3.0 6.0 \n",
"Alcohol use 1000.0 4.563 2.620477 1.0 2.00 5.0 7.0 \n",
"Dust Allergy 1000.0 5.165 1.980833 1.0 4.00 6.0 7.0 \n",
"OccuPational Hazards 1000.0 4.840 2.107805 1.0 3.00 5.0 7.0 \n",
"Genetic Risk 1000.0 4.580 2.126999 1.0 2.00 5.0 7.0 \n",
"chronic Lung Disease 1000.0 4.380 1.848518 1.0 3.00 4.0 6.0 \n",
"Balanced Diet 1000.0 4.491 2.135528 1.0 2.00 4.0 7.0 \n",
"Obesity 1000.0 4.465 2.124921 1.0 3.00 4.0 7.0 \n",
"Smoking 1000.0 3.948 2.495902 1.0 2.00 3.0 7.0 \n",
"Passive Smoker 1000.0 4.195 2.311778 1.0 2.00 4.0 7.0 \n",
"Chest Pain 1000.0 4.438 2.280209 1.0 2.00 4.0 7.0 \n",
"Coughing of Blood 1000.0 4.859 2.427965 1.0 3.00 4.0 7.0 \n",
"Fatigue 1000.0 3.856 2.244616 1.0 2.00 3.0 5.0 \n",
"Weight Loss 1000.0 3.855 2.206546 1.0 2.00 3.0 6.0 \n",
"Shortness of Breath 1000.0 4.240 2.285087 1.0 2.00 4.0 6.0 \n",
"Wheezing 1000.0 3.777 2.041921 1.0 2.00 4.0 5.0 \n",
"Swallowing Difficulty 1000.0 3.746 2.270383 1.0 2.00 4.0 5.0 \n",
"Clubbing of Finger Nails 1000.0 3.923 2.388048 1.0 2.00 4.0 5.0 \n",
"Frequent Cold 1000.0 3.536 1.832502 1.0 2.00 3.0 5.0 \n",
"Dry Cough 1000.0 3.853 2.039007 1.0 2.00 4.0 6.0 \n",
"Snoring 1000.0 2.926 1.474686 1.0 2.00 3.0 4.0 \n",
"\n",
" max \n",
"Age 73.0 \n",
"Gender 2.0 \n",
"Air Pollution 8.0 \n",
"Alcohol use 8.0 \n",
"Dust Allergy 8.0 \n",
"OccuPational Hazards 8.0 \n",
"Genetic Risk 7.0 \n",
"chronic Lung Disease 7.0 \n",
"Balanced Diet 7.0 \n",
"Obesity 7.0 \n",
"Smoking 8.0 \n",
"Passive Smoker 8.0 \n",
"Chest Pain 9.0 \n",
"Coughing of Blood 9.0 \n",
"Fatigue 9.0 \n",
"Weight Loss 8.0 \n",
"Shortness of Breath 9.0 \n",
"Wheezing 8.0 \n",
"Swallowing Difficulty 8.0 \n",
"Clubbing of Finger Nails 9.0 \n",
"Frequent Cold 7.0 \n",
"Dry Cough 7.0 \n",
"Snoring 7.0 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane.describe().T"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a043ec73",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Patient Id', 'Age', 'Gender', 'Air Pollution', 'Alcohol use',\n",
" 'Dust Allergy', 'OccuPational Hazards', 'Genetic Risk',\n",
" 'chronic Lung Disease', 'Balanced Diet', 'Obesity', 'Smoking',\n",
" 'Passive Smoker', 'Chest Pain', 'Coughing of Blood', 'Fatigue',\n",
" 'Weight Loss', 'Shortness of Breath', 'Wheezing',\n",
" 'Swallowing Difficulty', 'Clubbing of Finger Nails', 'Frequent Cold',\n",
" 'Dry Cough', 'Snoring', 'Level'],\n",
" dtype='object')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane.columns"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e6cad188",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Gender\n",
"1 598\n",
"2 402\n",
"dtype: int64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane2 = dane.groupby('Gender').size()\n",
"dane2"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "966e57b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Gender'>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGrCAYAAADqwWxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAieklEQVR4nO3de3BU5cHH8d8mIQsEdtNEsptouHiFVBABm6xgtRCJGinWeMFJAS2VKQYqRBAzIvAiQyjWYqlc1FrAVora8RoEuUmwEm6xWAS5qNiguAkVs0tQNpCc948Op13By4bAPkm+n5mdYc/z7J7nMK75cvbsxmFZliUAAACDxER7AQAAAF9HoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOHHRXkBD1NfX68CBA2rfvr0cDke0lwMAAL4Hy7J0+PBhpaWlKSbm28+RNMlAOXDggNLT06O9DAAA0AD79+/Xeeed961zmmSgtG/fXtJ/DtDlckV5NQAA4PsIBoNKT0+3f45/myYZKCfe1nG5XAQKAABNzPe5PIOLZAEAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCciAPl008/1c9//nMlJyerTZs26t69u7Zu3WqPW5alyZMnKzU1VW3atFF2drb27t0b9hyHDh1Sfn6+XC6XEhMTNWLECNXU1Jz+0QAAgGYhokD54osv1LdvX7Vq1UrLly/Xzp079eijj+oHP/iBPWfWrFmaM2eOFixYoE2bNikhIUE5OTk6evSoPSc/P187duzQqlWrVFJSovXr12vkyJGNd1QAAKBJc1iWZX3fyQ888IDefvttvfXWW6cctyxLaWlpuu+++zR+/HhJUiAQkMfj0aJFizRkyBC9//77ysjI0JYtW9SnTx9J0ooVK3TDDTfok08+UVpa2neuIxgMyu12KxAI8MsCAQBoIiL5+R3RGZRXX31Vffr00a233qqUlBRdfvnleuqpp+zxffv2ye/3Kzs7297mdruVmZmpsrIySVJZWZkSExPtOJGk7OxsxcTEaNOmTafcbygUUjAYDLsBAIDmK6JA+eijjzR//nxddNFFeuONNzRq1Cj9+te/1uLFiyVJfr9fkuTxeMIe5/F47DG/36+UlJSw8bi4OCUlJdlzvq64uFhut9u+paenR7JsAADQxMRFMrm+vl59+vTRjBkzJEmXX3653nvvPS1YsEDDhw8/IwuUpKKiIhUWFtr3g8Fgi42Uzg8si/YScBZ9PDM32ksAgKiI6AxKamqqMjIywrZ169ZNFRUVkiSv1ytJqqysDJtTWVlpj3m9XlVVVYWNHz9+XIcOHbLnfJ3T6ZTL5Qq7AQCA5iuiQOnbt692794dtm3Pnj3q1KmTJKlLly7yer1as2aNPR4MBrVp0yb5fD5Jks/nU3V1tcrLy+05a9euVX19vTIzMxt8IAAAoPmI6C2ecePG6corr9SMGTN02223afPmzXryySf15JNPSpIcDofGjh2r6dOn66KLLlKXLl300EMPKS0tTTfddJOk/5xxue6663T33XdrwYIFOnbsmEaPHq0hQ4Z8r0/wAACA5i+iQLniiiv00ksvqaioSNOmTVOXLl302GOPKT8/355z//3368iRIxo5cqSqq6vVr18/rVixQq1bt7bnPPvssxo9erQGDBigmJgY5eXlac6cOY13VAAAoEmL6HtQTNGSvweFi2RbFi6SBdCcnLHvQQEAADgbCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGiShQpk6dKofDEXbr2rWrPX706FEVFBQoOTlZ7dq1U15eniorK8Oeo6KiQrm5uWrbtq1SUlI0YcIEHT9+vHGOBgAANAtxkT7ghz/8oVavXv3fJ4j771OMGzdOy5Yt0wsvvCC3263Ro0fr5ptv1ttvvy1JqqurU25urrxerzZs2KDPPvtMw4YNU6tWrTRjxoxGOBwAANAcRBwocXFx8nq9J20PBAJ6+umntWTJEvXv31+StHDhQnXr1k0bN25UVlaWVq5cqZ07d2r16tXyeDzq2bOnHn74YU2cOFFTp05VfHz86R8RAABo8iK+BmXv3r1KS0vT+eefr/z8fFVUVEiSysvLdezYMWVnZ9tzu3btqo4dO6qsrEySVFZWpu7du8vj8dhzcnJyFAwGtWPHjm/cZygUUjAYDLsBAIDmK6JAyczM1KJFi7RixQrNnz9f+/bt01VXXaXDhw/L7/crPj5eiYmJYY/xeDzy+/2SJL/fHxYnJ8ZPjH2T4uJiud1u+5aenh7JsgEAQBMT0Vs8119/vf3nHj16KDMzU506ddLzzz+vNm3aNPriTigqKlJhYaF9PxgMEikAADRjp/Ux48TERF188cX64IMP5PV6VVtbq+rq6rA5lZWV9jUrXq/3pE/1nLh/qutaTnA6nXK5XGE3AADQfJ1WoNTU1OjDDz9UamqqevfurVatWmnNmjX2+O7du1VRUSGfzydJ8vl82r59u6qqquw5q1atksvlUkZGxuksBQAANCMRvcUzfvx4DRo0SJ06ddKBAwc0ZcoUxcbG6o477pDb7daIESNUWFiopKQkuVwujRkzRj6fT1lZWZKkgQMHKiMjQ0OHDtWsWbPk9/s1adIkFRQUyOl0npEDBAAATU9EgfLJJ5/ojjvu0Oeff64OHTqoX79+2rhxozp06CBJmj17tmJiYpSXl6dQKKScnBzNmzfPfnxsbKxKSko0atQo+Xw+JSQkaPjw4Zo2bVrjHhUAAGjSHJZlWdFeRKSCwaDcbrcCgUCLux6l8wPLor0EnEUfz8yN9hIAoNFE8vOb38UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzmkFysyZM+VwODR27Fh729GjR1VQUKDk5GS1a9dOeXl5qqysDHtcRUWFcnNz1bZtW6WkpGjChAk6fvz46SwFAAA0Iw0OlC1btuiJJ55Qjx49wraPGzdOr732ml544QWVlpbqwIEDuvnmm+3xuro65ebmqra2Vhs2bNDixYu1aNEiTZ48ueFHAQAAmpW4hjyopqZG+fn5euqppzR9+nR7eyAQ0NNPP60lS5aof//+kqSFCxeqW7du2rhxo7KysrRy5Urt3LlTq1evlsfjUc+ePfXwww9r4sSJmjp1quLj40/aXygUUigUsu8Hg8GGLBsAjNb5gWXRXgLOoo9n5kZ7CUZr0BmUgoIC5ebmKjs7O2x7eXm5jh07Fra9a9eu6tixo8rKyiRJZWVl6t69uzwejz0nJydHwWBQO3bsOOX+iouL5Xa77Vt6enpDlg0AAJqIiANl6dKleuedd1RcXHzSmN/vV3x8vBITE8O2ezwe+f1+e87/xsmJ8RNjp1JUVKRAIGDf9u/fH+myAQBAExLRWzz79+/Xvffeq1WrVql169Znak0ncTqdcjqdZ21/AAAguiI6g1JeXq6qqir16tVLcXFxiouLU2lpqebMmaO4uDh5PB7V1taquro67HGVlZXyer2SJK/Xe9Knek7cPzEHAAC0bBEFyoABA7R9+3Zt27bNvvXp00f5+fn2n1u1aqU1a9bYj9m9e7cqKirk8/kkST6fT9u3b1dVVZU9Z9WqVXK5XMrIyGikwwIAAE1ZRG/xtG/fXpdeemnYtoSEBCUnJ9vbR4wYocLCQiUlJcnlcmnMmDHy+XzKysqSJA0cOFAZGRkaOnSoZs2aJb/fr0mTJqmgoIC3cQAAgKQGfsz428yePVsxMTHKy8tTKBRSTk6O5s2bZ4/HxsaqpKREo0aNks/nU0JCgoYPH65p06Y19lIAAEATddqBsm7durD7rVu31ty5czV37txvfEynTp30+uuvn+6uAQBAM8Xv4gEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgnokCZP3++evToIZfLJZfLJZ/Pp+XLl9vjR48eVUFBgZKTk9WuXTvl5eWpsrIy7DkqKiqUm5urtm3bKiUlRRMmTNDx48cb52gAAECzEFGgnHfeeZo5c6bKy8u1detW9e/fX4MHD9aOHTskSePGjdNrr72mF154QaWlpTpw4IBuvvlm+/F1dXXKzc1VbW2tNmzYoMWLF2vRokWaPHly4x4VAABo0hyWZVmn8wRJSUl65JFHdMstt6hDhw5asmSJbrnlFknSrl271K1bN5WVlSkrK0vLly/XjTfeqAMHDsjj8UiSFixYoIkTJ+rgwYOKj48/5T5CoZBCoZB9PxgMKj09XYFAQC6X63SW3+R0fmBZtJeAs+jjmbnRXgLOIl7fLUtLfH0Hg0G53e7v9fO7wdeg1NXVaenSpTpy5Ih8Pp/Ky8t17NgxZWdn23O6du2qjh07qqysTJJUVlam7t2723EiSTk5OQoGg/ZZmFMpLi6W2+22b+np6Q1dNgAAaAIiDpTt27erXbt2cjqd+tWvfqWXXnpJGRkZ8vv9io+PV2JiYth8j8cjv98vSfL7/WFxcmL8xNg3KSoqUiAQsG/79++PdNkAAKAJiYv0AZdccom2bdumQCCgv/3tbxo+fLhKS0vPxNpsTqdTTqfzjO4DAACYI+JAiY+P14UXXihJ6t27t7Zs2aLf//73uv3221VbW6vq6uqwsyiVlZXyer2SJK/Xq82bN4c934lP+ZyYAwAAcNrfg1JfX69QKKTevXurVatWWrNmjT22e/duVVRUyOfzSZJ8Pp+2b9+uqqoqe86qVavkcrmUkZFxuksBAADNRERnUIqKinT99derY8eOOnz4sJYsWaJ169bpjTfekNvt1ogRI1RYWKikpCS5XC6NGTNGPp9PWVlZkqSBAwcqIyNDQ4cO1axZs+T3+zVp0iQVFBTwFg4AALBFFChVVVUaNmyYPvvsM7ndbvXo0UNvvPGGrr32WknS7NmzFRMTo7y8PIVCIeXk5GjevHn242NjY1VSUqJRo0bJ5/MpISFBw4cP17Rp0xr3qAAAQJN22t+DEg2RfI66ueF7ElqWlvg9CS0Zr++WpSW+vs/K96AAAACcKQQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjBNRoBQXF+uKK65Q+/btlZKSoptuukm7d+8Om3P06FEVFBQoOTlZ7dq1U15eniorK8PmVFRUKDc3V23btlVKSoomTJig48ePn/7RAACAZiGiQCktLVVBQYE2btyoVatW6dixYxo4cKCOHDlizxk3bpxee+01vfDCCyotLdWBAwd088032+N1dXXKzc1VbW2tNmzYoMWLF2vRokWaPHly4x0VAABo0hyWZVkNffDBgweVkpKi0tJS/fjHP1YgEFCHDh20ZMkS3XLLLZKkXbt2qVu3biorK1NWVpaWL1+uG2+8UQcOHJDH45EkLViwQBMnTtTBgwcVHx//nfsNBoNyu90KBAJyuVwNXX6T1PmBZdFeAs6ij2fmRnsJOIt4fbcsLfH1HcnP79O6BiUQCEiSkpKSJEnl5eU6duyYsrOz7Tldu3ZVx44dVVZWJkkqKytT9+7d7TiRpJycHAWDQe3YseOU+wmFQgoGg2E3AADQfDU4UOrr6zV27Fj17dtXl156qSTJ7/crPj5eiYmJYXM9Ho/8fr8953/j5MT4ibFTKS4ultvttm/p6ekNXTYAAGgCGhwoBQUFeu+997R06dLGXM8pFRUVKRAI2Lf9+/ef8X0CAIDoiWvIg0aPHq2SkhKtX79e5513nr3d6/WqtrZW1dXVYWdRKisr5fV67TmbN28Oe74Tn/I5MefrnE6nnE5nQ5YKAACaoIjOoFiWpdGjR+ull17S2rVr1aVLl7Dx3r17q1WrVlqzZo29bffu3aqoqJDP55Mk+Xw+bd++XVVVVfacVatWyeVyKSMj43SOBQAANBMRnUEpKCjQkiVL9Morr6h9+/b2NSNut1tt2rSR2+3WiBEjVFhYqKSkJLlcLo0ZM0Y+n09ZWVmSpIEDByojI0NDhw7VrFmz5Pf7NWnSJBUUFHCWBAAASIowUObPny9Juuaaa8K2L1y4UHfeeackafbs2YqJiVFeXp5CoZBycnI0b948e25sbKxKSko0atQo+Xw+JSQkaPjw4Zo2bdrpHQkAAGg2IgqU7/OVKa1bt9bcuXM1d+7cb5zTqVMnvf7665HsGgAAtCD8Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxIg6U9evXa9CgQUpLS5PD4dDLL78cNm5ZliZPnqzU1FS1adNG2dnZ2rt3b9icQ4cOKT8/Xy6XS4mJiRoxYoRqampO60AAAEDzEXGgHDlyRJdddpnmzp17yvFZs2Zpzpw5WrBggTZt2qSEhATl5OTo6NGj9pz8/Hzt2LFDq1atUklJidavX6+RI0c2/CgAAECzEhfpA66//npdf/31pxyzLEuPPfaYJk2apMGDB0uSnnnmGXk8Hr388ssaMmSI3n//fa1YsUJbtmxRnz59JEl/+MMfdMMNN+i3v/2t0tLSTuNwAABAc9Co16Ds27dPfr9f2dnZ9ja3263MzEyVlZVJksrKypSYmGjHiSRlZ2crJiZGmzZtOuXzhkIhBYPBsBsAAGi+GjVQ/H6/JMnj8YRt93g89pjf71dKSkrYeFxcnJKSkuw5X1dcXCy3223f0tPTG3PZAADAME3iUzxFRUUKBAL2bf/+/dFeEgAAOIMaNVC8Xq8kqbKyMmx7ZWWlPeb1elVVVRU2fvz4cR06dMie83VOp1MulyvsBgAAmq9GDZQuXbrI6/VqzZo19rZgMKhNmzbJ5/NJknw+n6qrq1VeXm7PWbt2rerr65WZmdmYywEAAE1UxJ/iqamp0QcffGDf37dvn7Zt26akpCR17NhRY8eO1fTp03XRRRepS5cueuihh5SWlqabbrpJktStWzddd911uvvuu7VgwQIdO3ZMo0eP1pAhQ/gEDwAAkNSAQNm6dat+8pOf2PcLCwslScOHD9eiRYt0//3368iRIxo5cqSqq6vVr18/rVixQq1bt7Yf8+yzz2r06NEaMGCAYmJilJeXpzlz5jTC4QAAgObAYVmWFe1FRCoYDMrtdisQCLS461E6P7As2kvAWfTxzNxoLwFnEa/vlqUlvr4j+fndJD7FAwAAWhYCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHGiGihz585V586d1bp1a2VmZmrz5s3RXA4AADBE1ALlueeeU2FhoaZMmaJ33nlHl112mXJyclRVVRWtJQEAAENELVB+97vf6e6779Zdd92ljIwMLViwQG3bttWf/vSnaC0JAAAYIi4aO62trVV5ebmKiorsbTExMcrOzlZZWdlJ80OhkEKhkH0/EAhIkoLB4JlfrGHqQ19Gewk4i1rif+MtGa/vlqUlvr5PHLNlWd85NyqB8u9//1t1dXXyeDxh2z0ej3bt2nXS/OLiYv3f//3fSdvT09PP2BoBE7gfi/YKAJwpLfn1ffjwYbnd7m+dE5VAiVRRUZEKCwvt+/X19Tp06JCSk5PlcDiiuDKcDcFgUOnp6dq/f79cLle0lwOgEfH6blksy9Lhw4eVlpb2nXOjEijnnHOOYmNjVVlZGba9srJSXq/3pPlOp1NOpzNsW2Ji4plcIgzkcrn4HxjQTPH6bjm+68zJCVG5SDY+Pl69e/fWmjVr7G319fVas2aNfD5fNJYEAAAMErW3eAoLCzV8+HD16dNHP/rRj/TYY4/pyJEjuuuuu6K1JAAAYIioBcrtt9+ugwcPavLkyfL7/erZs6dWrFhx0oWzgNPp1JQpU056mw9A08frG9/EYX2fz/oAAACcRfwuHgAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0BBk7N//3794he/iPYyADTAV199pb///e/auXPnSWNHjx7VM888E4VVwUR8DwqanHfffVe9evVSXV1dtJcCIAJ79uzRwIEDVVFRIYfDoX79+mnp0qVKTU2V9J/fx5aWlsZrG5KayG8zRsvy6quvfuv4Rx99dJZWAqAxTZw4UZdeeqm2bt2q6upqjR07Vn379tW6devUsWPHaC8PhuEMCowTExMjh8Ohb/tP0+Fw8K8soInxeDxavXq1unfvLkmyLEv33HOPXn/9db355ptKSEjgDApsXIMC46SmpurFF19UfX39KW/vvPNOtJcIoAG++uorxcX998S9w+HQ/PnzNWjQIF199dXas2dPFFcH0xAoME7v3r1VXl7+jePfdXYFgJm6du2qrVu3nrT98ccf1+DBg/XTn/40CquCqQgUGGfChAm68sorv3H8wgsv1JtvvnkWVwSgMfzsZz/TX//611OOPf7447rjjjv4xwdsXIMCAACMwxkUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQATc4111yjsWPHRnsZAM4gAgVAg/j9ft1777268MIL1bp1a3k8HvXt21fz58/Xl19+Ge3lAWji+F08ACL20UcfqW/fvkpMTNSMGTPUvXt3OZ1Obd++XU8++aTOPfdco790q66uTg6HQzEx/BsNMBWvTgARu+eeexQXF6etW7fqtttuU7du3XT++edr8ODBWrZsmQYNGiRJqq6u1i9/+Ut16NBBLpdL/fv317vvvms/z9SpU9WzZ0/9+c9/VufOneV2uzVkyBAdPnzYnnPkyBENGzZM7dq1U2pqqh599NGT1hMKhTR+/Hide+65SkhIUGZmptatW2ePL1q0SImJiXr11VeVkZEhp9OpioqKM/cXBOC0ESgAIvL5559r5cqVKigoUEJCwinnOBwOSdKtt96qqqoqLV++XOXl5erVq5cGDBigQ4cO2XM//PBDvfzyyyopKVFJSYlKS0s1c+ZMe3zChAkqLS3VK6+8opUrV2rdunUn/T6m0aNHq6ysTEuXLtU///lP3Xrrrbruuuu0d+9ee86XX36p3/zmN/rjH/+oHTt2KCUlpTH/WgA0NgsAIrBx40ZLkvXiiy+GbU9OTrYSEhKshIQE6/7777feeusty+VyWUePHg2bd8EFF1hPPPGEZVmWNWXKFKtt27ZWMBi0xydMmGBlZmZalmVZhw8ftuLj463nn3/eHv/888+tNm3aWPfee69lWZb1r3/9y4qNjbU+/fTTsP0MGDDAKioqsizLshYuXGhJsrZt29Y4fwkAzjiuQQHQKDZv3qz6+nrl5+crFArp3XffVU1NjZKTk8PmffXVV/rwww/t+507d1b79u3t+6mpqaqqqpL0n7MrtbW1yszMtMeTkpJ0ySWX2Pe3b9+uuro6XXzxxWH7CYVCYfuOj49Xjx49GudgAZxxBAqAiFx44YVyOBzavXt32Pbzzz9fktSmTRtJUk1NjVJTU8OuBTkhMTHR/nOrVq3CxhwOh+rr67/3empqahQbG6vy8nLFxsaGjbVr187+c5s2bey3ngCYj0ABEJHk5GRde+21evzxxzVmzJhvvA6lV69e8vv9iouLU+fOnRu0rwsuuECtWrXSpk2b1LFjR0nSF198oT179ujqq6+WJF1++eWqq6tTVVWVrrrqqgbtB4B5uEgWQMTmzZun48ePq0+fPnruuef0/vvva/fu3frLX/6iXbt2KTY2VtnZ2fL5fLrpppu0cuVKffzxx9qwYYMefPBBbd269Xvtp127dhoxYoQmTJigtWvX6r333tOdd94Z9vHgiy++WPn5+Ro2bJhefPFF7du3T5s3b1ZxcbGWLVt2pv4KAJxhnEEBELELLrhA//jHPzRjxgwVFRXpk08+kdPpVEZGhsaPH6977rlHDodDr7/+uh588EHdddddOnjwoLxer3784x/L4/F873098sgjqqmp0aBBg9S+fXvdd999CgQCYXMWLlyo6dOn67777tOnn36qc845R1lZWbrxxhsb+9ABnCUOy7KsaC8CAADgf/EWDwAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOP8P48zUy+vrOqqAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"dane['Gender'].value_counts().plot(kind = 'bar')\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8d81604c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Smoking\n",
" 1 181\n",
" 2 222\n",
" 3 172\n",
" 4 59\n",
" 5 10\n",
" 6 60\n",
" 7 207\n",
" 8 89\n",
" dtype: int64]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane3 = [dane.groupby('Smoking').size()]\n",
"dane3 "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d85261ce",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: ylabel='count'>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGFCAYAAAAvsY4uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFUUlEQVR4nO3dd3wUZeI/8M9sy2567wmBUBNCE1RUFDkbKAooiuWs531/HrbTu0PvznYn53menl/LV7BhAexiwbMLSIBIL6GEUJNAem/b5/dHBAQCJLsz+8zsft6vFy/Mksx8kN397Mw88zySLMsyiIiIVGAQHYCIiIIXS4aIiFTDkiEiItWwZIiISDUsGSIiUg1LhoiIVMOSISIi1bBkiIhINSwZIiJSDUuGiIhUw5IhIiLVsGSIiEg1LBkiIlINS4aIiFTDkiEiItWwZIiISDUsGSIiUg1LhoiIVMOSISIi1bBkiIhINSwZIiJSDUuGiIhUw5IhIiLVsGSIiEg1LBkiIlINS4aIiFTDkiEiItWwZIiISDUsGSIiUg1LhoiIVMOSISIi1bBkiIhINSwZIiJSDUuGiIhUw5IhIiLVsGSIiEg1LBkiIlINS4aIiFTDkiEiItWwZIiISDUsGSIiUg1LhoiIVMOSISIi1bBk6Cg5OTmQJOm4XzNnzhQdjYh0yCQ6AGnLmjVr4PF4Dn9dXFyMCy+8ENOnTxeYioj0SpJlWRYdgrTr3nvvxeLFi1FaWgpJkkTHEcPtBDobAXtT1++dTcd/7WoHJAMgGQGDETCYfv7vQ4+Zuh4/9Jg5HIhIBiKTgciUrt/D48X+PYlUwCMZOiGn04n58+fjvvvuC+6CaasF6nf9/KsUqN8NNO4HOhu6SsTVEZgcxrCfS+cXxXPo95gsIHEgENunq6SIdIIlQyf0ySefoKmpCTfffLPoKP5zdR4pkrpjCsXeJDpdF48DaC7v+nUiJhuQ2B9IGgwkDcKG5GlISU1HeqwtcDmJeoGny+iELr74YlgsFnz++eeio/ReaxVQtgooK+r6vaoYkD2n/jmdGS+9jn2dVsRHWJCfHo289GgMTY9BQUYMchIjRMcjYslQ9/bv349+/frh448/xhVXXCE6zqnVlhxdKo37RCdSnSciBbn1/znhn6fHWHHOgEScMyAJ5/RPRHyEJYDpiLrwdBl1a968eUhOTsall14qOkr3KjcBe5Z2lUr5T0BHvehEAdccPRA4yV/7YLMd76+twPtrKyBJQF5aNM4ZkIhx/ZMwOicOVrMxcGEpZLFk6Dherxfz5s3DTTfdBJNJI08RWe4qk+2fA9s/A5rKRCcSrtyU0+PvlWVg68EWbD3YgrnL9sBqNmBMTjzGDUjEOf2TMCQtKrgHd5AwGnkHIS357rvvUFZWhltvvVVsEI8b2Le8q1h2fAG0VYnNozHFniyff9bu8mJ5aR2Wl9YB2IHESAsuGJKCqSMzcHrfeBYOKYbXZEhb3A5g9w9dxVLy364hxNStmVHP4YvaRMW3mxVvw9QRGZg6KhN9OXiA/MSSIW3Y+yOw7k1g59eAs1V0Gs2TDSYMdbyBdo+698yMzI7FtFGZuHxYOmLCzarui4ITS4bEsbcAm94B1rwG1JWITqMrjriBGFT5aMD2ZzEacP7gJEwblYkJg5NhNvKGUOoZlgwFXtUWYM2rwOYPuqZjoV6ryJyEc3bdIGTfceFmTB6ejmtPz8aQtGghGUg/WDIUGG4HsO3TrnIp/0l0Gt37MesO3Fg6TnQMjB+UhP93Xi7O7JcgOgppFEeXkbqayoC1rwPr3wY66kSnCRobHBmiIwAAlpbUYmlJLUZlx+L/nZeLC/NSODKNjsIjGVJHXSmw7F9A8UdBOZ2LaNPC5mJ9c5ToGMcZkByJ/zkvF1eMSOd1GwLAkiGl1e4EfjxULl7RaYKSHBaNvs1zRMc4qfQYK24b1w/Xnp6FcAtPmIQylgwpo3YnsOyfwNZFLBeVtSaPRkHZfaJj9EhcuBk3js3BzWflII5zp4Uklgz5p7kCWPJE11BknhYLiJKsq3Fx6RTRMXol3GLE/zsvF789tx/nTAsxLBnyTUcD8OO/u0aLeRyi04SUTzPuxz27TxMdwycZsTb8edIQXDosTXQUChCWDPWO2wmsfA5Y8b+Ao0V0mpD0l7h/Y0FluugYfjmjbzwemZyPvHTeZxPsWDLUc3uXA4t/37WiJAlzpvwGqhz6v75hNEi4ZkwW/nDRIK51E8RYMnRq7fXAN3/puu5CQrmjMtG/9l+iYygq2mrCPRcMxE1j+8DEYc9BhyVDJybLwIa3gW8f5mzIGlGbdj7G7L1ddAxV9E+OxEOX5eG8gUmio5CC+LGBulezA5g3CfjsLhaMhuzvxUJlerOrpg03vb4at72xBgebOkXHIYWwZOhork7g+78Bc84BylaKTkPH2OzOFB1Bdd/vqMElz/6ITzceEB2FFMDTZXTEru+BL+4DGveJTkIncGvEC/ihPl50jIC5fHg6/j5lKGJsXMtGr1gy1DUs+Zu/Aqvnik5CJyEbwzC48zU4vKF1AiI9xop/Xz0cZ+UqvwooqS+0nq10vPrdwGsXsmB0wB7bP+QKBgAONttx/as/YfYX2+B0c8oivQm9ZywdseVDYO55QOVG0UmoB2psuaIjCCPLwCvL9+LyFwpRUsXlufWEJROKXJ1do8Y+ug1w8gWrF6XIFh1BuB1VrZj8QiFeXb4HPNOvDyyZUFOzA3hlArD+LdFJqJfWOfQ9lYxSnG4vHv9iO2547SdUNdtFx6FTYMmEkvVvA6+cD9RsE52EfLCkMVl0BE1Zsaselz1fiHX7eR+XlrFkQoGjDfjoduCzOwFXh+g05AOvLQE72sJFx9CcujYHrn2liPfUaBhLJtg1V3SNHtvyvugk5IfW6AGiI2iW0+3FPe9uxNPflPA6jQaxZIJZ5Wbg1Qt4eiwIVFj6iY6gec//sAt3LtwAu4uL52kJSyZYlX4HzJsItFaKTkIK2OYJ/ulklPDFlkpcPXcVqls4IEArWDLBaN2bwDvXAM420UlIIUXtXEmypzZXNOOKF1ag+ECz6CgElkzw+f7vwOd3A1636CSkEFky4IeGBNExdKWqxY7pc1bhq2IeyYvGkgkWHhfw8W+B5f8WnYQU5o7OQaPLJDqG7nS6PLhjwXq8uGRXwPb5xBNPYMyYMYiKikJycjKmTJmCkpKSgO1fi1gywcDeDMyfBmx+T3QSUkF9ROhOJ+MvWQae+roEf1m0JSAjz5YtW4aZM2eiqKgI3377LVwuFy666CK0t7ervm+t4izMetdcAcy/CqjdLjoJqWRV1m9xbel40TF07/ozsvH4lKGQJClg+6ytrUVycjKWLVuGc889N2D71RIeg+tZUznwxiSgqUx0ElLRJienk1HCgp+6XieBLJrm5q7BB/HxobMG0LF4ukyvWiqBNyezYELA8pYU0RGCxoKfyvDXT4oDcurM6/Xi3nvvxdlnn42hQ4eqvj+t4pGMHrXVdBVM417RSUhlsjkCRU1RomMElUAd0cycORPFxcUoLCxUbR96wCMZvWmvB968HKgvFZ2EAqAjdgA8Ml+mSlP7iObOO+/E4sWLsWTJEmRmhvaNtDyS0ZPORuDtK3iRP4RUhXE6GbWocUQjyzLuuusuLFq0CEuXLkXfvn0V2a6esWT0wt4CvD0NqNoiOgkF0E4uVKYqpYtm5syZWLhwIT799FNERUWhqqoKABATEwObzeb39vWIQ5j1wNEGvD0VqFgtOgkF2N8SnsTrB7JExwh6Sg1vPtHPz5s3DzfffLNf29YrHslonbMDWHg1CyZE/dCQJDpCSFjwUxnMRgMevTzfr+3wM/vxeEVRyzwu4N3rgP0rRCchATwRKdjXaRUdI2S8sXIfXi/kiE2lsWS07L9/BPYsEZ2CBGmOHig6Qsh5/Itt+GZrlegYQYUlo1WrXwHWzROdggQqN+WIjhByvDJwz7sbsbmiSXSUoMGS0aI9S4GvHhCdggQr9vCCvwidLg9ue3MtKho7REcJCiwZranfDbx/E9eDIaxsTRUdIWTVtjpw2xtr0e7g69BfLBktsTcD78wA7E2ik5BgssGEpQ2hO6miFpRUt+L3723kiDE/sWS0wusFPrwNqNspOglpgDOmH9o9fHmK9s22avznO07h5A8+i7Xi24eAXd+KTkEaURvRX3QE+tnzP5RyGWc/sGS0YMN8YNULolOQhuyR+oiOQD+TZeC+9zdhR1WL6Ci6xJIRrXw1sPj3olOQxmxwZIiOQL/Q4fTgt2+tQxsHAvQaS0Yke0vXdRiPU3QS0phlzZxORmvKGjrw2GdbRcfQHZaMSF/OApq5siUdTQ6LxvpmLlSmRR+sq8BXxZwRoDdYMqJs+xTYtFB0CtKgthhOJ6Nlf160BTWtdtExdIMlI0JrFfD5vaJTkEYd5EJlmtbQ7sSsDzeLjqEbLBkRPp0JdDaITkEatcPL6WS0bklJLd4u2i86hi6wZAJt9SvAru9EpyANW92RJjoC9cA/vtiOPbVtomNoHksmkOpKgW8eEp2CNO77hkTREagHOl0e/P69jXB7vKKjaBpLJlA8buDj2wF3p+gkpGHuqExUOSyiY1APbapoxnM/7BIdQ9NYMoGy7Eng4AbRKUjjGiMHiI5AvfTikl1YX9YoOoZmsWQCoWIdsPxp0SlIB/ab+4qOQL3k8cq4772N6HByNoDusGTUJsvAf/8AyB7RSUgHtjg5nYwe7avvwAs8bdYtlozaNi4ADq4XnYJ0orA1RXQE8tGrhXtR3sDVNI/FklGTvQX47jHRKUgnZGMYChtjRccgHzndXsz+YrvoGJrDklHTsieB9hrRKUgn7LH94fDyJalnX22twqrd9aJjaAqf0WqpKwV+mis6BelIjS1XdARSwN8Wb4PHyyWbD2HJqOWrBwGvS3QK0pFdXKgsKGyvbMG7azi7+iEsGTWUfMWllKnX1nVyOplg8fQ3O9HcyQ+ZAEtGeW4n8PWDolOQDi1pShYdgRTS0O7Ec9+Xio6hCSwZpRX9H9CwR3QK0hmvLQHb28JFxyAFvbVqH3ZzAk2WjKJaq4Ef/y06BelQazSnkwk2Lo+MxxdvEx1DOJaMkn78F+BsFZ2CdKjCwulkgtGSklosLQnt2xhYMkppOQisf1t0CtKp7Z5s0RFIJU99XSI6glAsGaUU/gfwOESnIJ0qaud0MsFq68EW/LizVnQMYVgySmitAta/JToF6ZQsGbhQWZCbs2y36AjCsGSUUPgs4LaLTkE65Y7ug0aXSXQMUtHK3fXYXNEkOoYQLBk/1XfW46vW3fBK/F9JvqmP7C86AgVAqB7N8J3RTwu2L8AfO3fgivzTsSjvArgMZtGRSGf2GnJER6AA+Kq4Cnvr2kXHCDiWjB86XB14t+RdAMC+9oN4uHMnJg0ehgUFF8NutglOR3qxiQuVhQSvDLz8Y+jdqM2S8cMHOz9A6zH3xVR11uKfbdtxce5AvDp8Etqs0YLSkV4sb+F0MqHio/UVqGkNreu3LBkfubwuvL3txPfFNDga8b8txbgoOxPPj7gUTeHxAUxHeiGbw1HUxA8iocLp9mLein2iYwQUS8ZH3+z7BtUd1af8vlZXG15u3oKLMpLw5MhLUR2THoB0pBcdMQPgkfkyDCXzi/aj1R46MzTz2e2jj0o/6tX3d7o7Mb9pCyYm2vDoqEtRnpCjTjDSlSorFyoLNa12Nxb+FDrrzbBkfLC/ZT/WVK3x6WddXhc+atyCyTESZo2ahF0pgxROR3qyE5xOJhS9VrgXLo9XdIyAYMn4oLdHMd3xyB78t7EY08LtuHvkJSjOKFAgGenNGi5UFpJqWh1YWhIaU82wZHrJ5XXhs12fKbY9GTKWNG3DtZZm3D7yAqzOGaPYtkn7fmhIEh2BBFm0oUJ0hIBgyfTSsvJlqLfXq7LtoqaduE2qxg3Dz8ey3LNU2QdphyciBfs6raJjkCDfba8JiSWaWTK99GHph6rvY1PLbtzprcBVw8bhq0HnccqaINUcPVB0BBLI6fbii82VomOoju9evVDZVolVB1cFbH8lrfvxR+deTlkTpMpNOaIjkGChcMqMJdMLi3YtglcO/IgQTlkTnIo9WaIjkGBr9zeivKFDdAxVsWR6yCt7sWjXIqEZOGVNcFnZmio6Agkmy8CiDQdEx1AVS6aH1lWvQ1V7legYADhlTTCQDSYsbeC/G7Fk6Gc/lP0gOsJxOGWNfjlj+qHdw5cfAXvr2rGhrFF0DNXwWd5DS8qXiI5wQpyyRn9qI7hQGR0RzEczLJke2NGwAwfatP8k4JQ1+rFH6iM6AmnI55sOBu00MyyZHtDiqbKT4ZQ12rfBwYXK6IjGDlfQTjPDkumB78u+Fx3BJ5yyRruWNXM6GTraDztqREdQBUvmFCpaK7CzcafoGH7jlDXaIYdFY31zlOgYpDGFu3gkE5L0dqrsVDhljXhtMZxOho5X3tCJsvrguzGT7zCn8EN5cJXMIZyyRpyDYf1ERyCNWh6ERzMsmZNotDdiY81G0TFUxSlrAm+Hl9PJUPcKS+tER1AcS+YkiiqL4JE9omMEBKesCZzVHVyojLq3ak89vF5ZdAxFsWROYl31OtERAo5T1qjv+4ZE0RFIo5o6XNhyoFl0DEWxZE5iQ80G0RGE4ZQ16nBHZaLKYREdgzSscFdwnTJjyZxAi7MFu5p2iY4hHKesUVZj5ADREUjjgu26DEvmBDbWbBSydoxWccoaZew39xUdgTRuXVkjOp3Bcy2YJXMC66vXi46gSZyyxj9bnJxOhk7O6fZi9b4G0TEUw5I5gfU1LJmTOXrKmgs5ZU0PFbamiI5AOlBYGjz3y7BkuuHwOFBcVyw6hm4UNZVwypoekI1hKGyMFR2DdGDNvuBZX4Yl043iumK4vC7RMXSHU9acnD22Pxxe/j+hU9tZ3QpZDo77ZfiM7wavx/iHU9Z0r8aWKzoC6USH04OyhuCYx4wl043NdZtFRwgKnLLmaLu4UBn1wo6qVtERFMGS6cbupt2iIwQVTlnTZV0np5OhnithyQQnh8ehi6WW9eiXU9Y8N+JSNEYkiI4UUEuakkVHIB3ZUdUiOoIiWDLH2Ne8jzdhqqzV1YZXmrfg4vTEkJmyxmtLwPa2cNExSEd4uixI8VRZ4ITSlDWt0ZxOhnpnf30H7C793/nPkjnG7maWTKCFwpQ1FRZOJ0O94/HKKK1uEx3DbyyZY+xp2iM6QsgK5ilrtnuyRUcgHQqG6zIsmWPsaWbJiBaMU9YUtXM6Geq9YBhhxpL5BZfXhbLWMtEx6BeCYcoaWTJwoTLySUk1SyaolLWUwe11i45B3Th6yprxupqyxh3dB40uk+gYpEPBMMJMP6/UANjXvE90BDqFrilr9uByHU1ZUx/ZX3QE0qnaVgecbn3fUsGS+YXqjmrREaiH9utoypq9hhzREUjH6tsdoiP4xaeSmTBhApqamo57vKWlBRMmTPA3kzD19nrREaiX9DBlzSYuVEZ+qGt1io7gF59KZunSpXA6j/+L2+12LF++3O9QotR3smT0SstT1ixv4XQy5Ls6nR/J9Opq5ObNR2Yn3rZtG6qqqg5/7fF48NVXXyEjQ7+f2lgy+ndoypr56Ym4MvJM3LxnA1KaDwrLI5vDUdSkvaMr0o+61hAqmREjRkCSJEiS1O1pMZvNhueff16xcIFW11knOgIp5NCUNe8l2nB57qW4bf9WZNXvC3iOjpgB8LTy0if5rq5N36fLelUye/fuhSzL6NevH1avXo2kpKTDf2axWJCcnAyj0ah4yEDhNZngc2jKmk9ijLi4zyTcfmA3+leXBGz/1VyojPxU3xZCRzJ9+nQtuuT16ntI3YnwdFnwOjRlzZfhEsaPvAS/rTmAoQe2qL7fEjlL9X1QcKsLpZL5pdLSUixZsgQ1NTXHlc7DDz/sd7BAa3G2wOnV92EpndqhKWuWWIAzR16I2xubcPq+Nartb21n8C9jQOqqb9f3+5JPJfPKK6/gjjvuQGJiIlJTUyFJ0uE/kyRJlyXDo5jQU9RUgiIJGD78fNze5sB5u1cqvo8ljUmn/iaik6gNpQv/hzz++OOYPXs2Zs2apXQeYVgyoWtTy27cCWDQsHH4jcOIi3b+CIMCC9d5IlKwp97qf0AKaXq/8O/TsJfGxkZMnz5d6SxCtbn0v24D+UfpKWuao7hQGfmvscMJr1cWHcNnPpXM9OnT8c033yidRShOjEmHKDVlTTkXKiMFeLwymjpdomP4zKfTZf3798dDDz2EoqIiFBQUwGw++hPf3XffrUi4QGLJ0LGqOmvxT9Ti5dyB+HVYBmaUFCLS3vNFpLa6MlVMR6HE4dbvMsySLMu9Pg7r2/fEn9AkScKePfpb+Ovz3Z/jz4V/Fh2DNCzKHIkZ4X3x69IixLWf+hrenVHPYXEt15Eh/y3/0/nIig8XHcMnPh3J7N27V+kcwvFIhk6lN1PWyAYTljTGBTghBStPqF2TCUZumSVDPXNoypqJiTY8OupSlCfkHPc9zph+aHfrd/YL0hZP7084aYZPRzK33nrrSf/89ddf9ymMSDySod46dsqa3xzYjQE/T1lTF87pZEg5ej6S8alkGhsbj/ra5XKhuLgYTU1Nul1PhiVDvjpqyppRl+C31QfQwIXKSEFuT4iVzKJFi457zOv14o477kBurj4/wbFkyF8yZCxp3IY2ZOCmliF4r58NVq8NDqMHTqMbDoMHTskNB1xwwg2n1wWn1wWXxwmn2wmP1w3o972EVBRjGA3A9yUjHn30UTz22GNHPTZo0CDs2LHDz2Sn5vPcZccyGAy47777MH78ePzpT39SarMBw5IhJVzXPART396LhnNbURa/H6bWfRiR/iuYq4yA1wjAcsKf9RhluMNkuKwynBYvXCYPnGYvXAYPHAZ3VzHBBcfP5WR3O+BwOWF3OmB32OHx6HeYK52cUYFPH/n5+fjuu+8Of20yKfb2f1KK7mX37t1wu/X5Zu1VYBoRCm0P7x+Joe+th+zxIGLvetS034DkLBc+XvEvpKbk4vQBk2GrsQGu7p9rRo8EY4eEsA4AMALo3YwDbpMX7jDAFSbDZfF2FZTJA6fBDafBc/gIyuF1welxwu52wuF2wO5wwOF0sKSCnMlkQmpqauD368sP3XfffUd9LcsyKisr8cUXX+Cmm25SJFigWU2cY4p8Y5VNeG5dPmK/PTKbs7lkDUyZN6KmvD+yh12Css1f4bPqZxETnYyxQ69EbFMc5E5l39RNbgNMbsDaDnSVVO94zDKcYTJcYV64LF64zF44jZ6uX1LXkZQDXUdRDo8TDrcTdpcTDqcddocjaJcA0QIljjpKS0uRnp4Oq9WKsWPH4oknnkB2drYC6U7Op+QbNmw46muDwYCkpCQ8/fTTpxx5plUR5gjREUiHsj2xePLLBBi3rDvqccnjRnychJpqoKY8D1lDnSgv/gHNLTX4auVLsFojMXb4lUixZ0Ju0cbRv9ElweaSYGvz7c4Gt8XbdRQVJncVlNkL1y9KygE3nLILDq+z65frUEl1ne7z4b7wkOHvYpBnnHEG3njjDQwaNAiVlZV47LHHMG7cOBQXFyMqKkqhlN3zqWSWLFmidA7hWDLUW+Ps2bj73XbIld2vtBlraEINul7AtQdGIDPPiYpthQAAu70NS356E0ajCacPvwJ9DEMg1+t3fioAMDkNMDkBW6tvP++yyHBbu46kuk71HTqSch85kpJ/vh51+EjKAcfPp/uCuaT8PZKZOHHi4f8eNmwYzjjjDPTp0wfvv/8+brvtNn/jnZRfyWtra1FS0vUCGzRo0FHLMesNS4Z645aGfEx6uxRyR8cJvyeycS+AYYe/rqscg4zBLhzY8dPhxzweN1at/wirAAzPvwiDokZDqg7NayNmpwSzU4LNh3vEZUmG2yLDZcWR61Fmb1dBGTzHlJTzcEk5nA7YnV1FpWXHzg/pr9jYWAwcOBC7du1SdLvd8alk2tvbcdddd+Gtt946fB7WaDTixhtvxPPPP4/wcP3NsRNu0l9mEmP27lEY8MGaU35yDt+zDkgf9otHJDTUnIW0gS5U7lx/3Pdv2voNNuEbDOh3OoalnQ9TJTikuYckWYLZIcHsAHyZyESWZLjC8PP1qJ8HTpg8Xaf7DB44JNdRR1IOt/PI6D6HHU6numu+KF0ybW1t2L17N379618rut3u+Hzhf9myZfj8889x9tlnAwAKCwtx99134/7778dLL72kaMhA4JEMnUqkbMH/Fg1C1NLVPfp+864NMPe9DS7HkQvisiyhqeFcpOQ6Ub27uNufK92zGqV7ViM9bSDG5F4Ga7UFcLNt1CTJEix2wGL37dqH19A1/NwZ9vPvJs+R032GI6f77LITTs/PAydcXaf77A47XK4Tnyo1m81+X5P5wx/+gMmTJ6NPnz44ePAgHnnkERiNRlx77bV+bbcnfCqZjz76CB9++CHGjx9/+LFJkybBZrPh6quvZslQ0Ml1x+Mfi6Mgbd9w6m/+meT1ID4OqK46+nHZY0Bb66+Q1MeF2v3dX88BgIOVO/Fp5TOIjU3DWfnTEN0QA9kemqfStM7glWDplGDpPPRI795aD5XU4XukzF44TV0DJ2Sb/1NMVlRU4Nprr0V9fT2SkpJwzjnnoKioKCCXOHwqmY6ODqSkpBz3eHJyMjpOco5ay8LNPF1G3bugoy/+551GyDW7e/2zsXIjqhFz3OMelxF26WIkZLpQX3HypTGamirx3xUvIjw8GmOHXYmkjnTIrdoYkUbK+GVJRRwz/Nyc6v9707vvvuv3NnzlU0WOHTsWjzzyCOx2++HHOjs78dhjj2Hs2LGKhQskHslQd35XOwz/M7ccck2dTz8f1XjiYnI5TXB6L0VsalaPttXR0YLvi+bhg61PoSJ+L6R4Zc/TkzYZwvX97+zTkcyzzz6LSy65BJmZmRg+fDgAYNOmTQgLC9Ptssw2kw1GyQiPzNMRBEgy8FTJKGQvWu3XtXfrrjVA9qgT/rmr0wxjxBWITvoILbWVPdqmx+PEinXvA5KEkfkXY2DEaUANj2yClSFC3yXj08qYQNcpswULFhyeYG3IkCG4/vrrYbP5th66Fox/bzzq7ade8ZCCW4zXiucKc2FbsUmR7a2YOAeOU9zdb4uyw9X2PtoafDtiGtT/LBQknwtjlcwRaUEm4sw0xE3pLzqGz3w6knniiSeQkpKC22+//ajHX3/9ddTW1mLWrFmKhAu0lIgUlkyIy3Ml4dFPw4BSZQoGAOJjvKjsPPn3dLZaEREzHV73O+hoaer1Pkp2rUTJrpXIzMjD6L4TEVZlBnQ8PTwdYQgPzESWavHpmszcuXMxePDg4x7Pz8/HnDlz/A7VEz/++CMmT56M9PR0SJKETz75xO9tpoYHfvI40o7L2vrjsdftQOk+RbcbKzf06Pvam22ISLoG1kjfp/moOLANnxQ+je8a5qMtvR1SGBe/1Tu9ny7z6RlYVVWFtLS04x5PSkpCZWXPziv7q729HcOHD8eLL76o2DZTIo4fMUeh4fdVw3HjnN2QGxpP/c29FFlX2uPvbW2IQEzaDFhs/o0oqm+owBcrXsDn5XNQn1oPKULfn4ZDmTHqxMtD6IFPz7ysrCysWLECffv2PerxFStWID09XZFgpzJx4sSj5uNRQmoEj2RCjRESnikegbTP15z6m31kLf0J6Hd6j7+/uS4KCX1moHbPArid/k130t7eiO9WvQqz2YozR0xFhjsXcpO+50gLNaYkfd9e4VPJ3H777bj33nvhcrkOL7f8/fff409/+hPuv/9+RQMGUnpEYAqStCHRG4Fnl2TBslq9ggEAc9kOWAtMsLf3fARYY3UskvvPQHXpQnhOcjd4T7lcdixf8w4kyYDTCiYh1zocqOWINM2TAHOifgdTAT6WzB//+EfU19fjd7/73eE5e6xWK2bNmoUHH3xQ0YCBlBGZIToCBchIZxr+/BEg7+t+ahelJUR7cKC9dz/TUJmAtEHX4OD2d+BVaEExWfZi7ebFWIvFyBt0LvITzoahyssRaRpljLNCMuv7uprPQ5iBrknWtm/fDpvNhgEDBiAsLEzJbD0mSRIWLVqEKVOm+LWdJnsTxr03TplQpFlXtQzCNfPLITe3BGyfVVc/im01vk3hkZRZiYri9yCrtHprn6xhGJV9ESzVJo5I0xjroDgk3jJUdAy/+HU1MDIyEmPGjFEqi3Cx1lhEmaPQ6vJxQQzSvAcrRmLkOxsgB3iZ8MianQB8K5naijRkFUxD2ZaPABXWTNlfvhn7yzcjKTEHZwy6HJF1EZCdXOVSC/R+PQbwcXRZMMuMyhQdgVRgkY34vw0jMPLtNUCACwYArCVFfv18TXk2sguuUChN92rr9mHxiufwxYGX0ZjaCEnn92cEA1Oyvq/HADoumba2NmzcuBEbN24EAOzduxcbN25EWVmZX9vNjlZ/zWsKrDRPFN74uh8Sv1orLIOpcg/Co/x7064p74fsYZMUSnRirW31+GbVy/h45zOoSqqAFKPv+zT0zMwjGXHWrl2LkSNHYuTIkQC61rgZOXIkHn74Yb+2Ozj++JtMSb/OcGTguYU2mDZsFx0F8VH+H0HVlA9GdsGFCqQ5NaerE8tWL8D7m5/A3pgdkBJZNoFmStL/kYxuj4fHjx+vypreQ+KHKL5NEuP6piGY8vYeyG29HNalkhhXNSrg/w2/NRUFyMp3onzrMgVSnZrX68HqjZ9iNT7F0CHnY0jsWBiqOJGs2gzhJhgj9X0jJqDjIxm1DElgyQSDx/aOwhVzt2qmYAAgomqHYtuqOTgKmUMCv6xG8fYl+GDVP7Ba/gauDJnvICoKhov+AJ8ix4m3xvPOfx2zyia8smY4hry7GvBqa4SUbcdKxbYlQUJd9ZlIHzRasW32xt59G/Bx4b+wtPVDdGY4AJ3fy6FFwXCqDGDJdIunzPSpjzsWb3yRjZjv1omO0i1jbQUiYxQ8Qy1LaKw7B6n9hym3zV6qrtmNzwqfxVdVr6E5rRmSzb+16OmIYLjoD7BkusVTZvpzXmcf/PttAwxbdoqOclLxEU5Ftyd7DWhpnoDkHLHP2eaWGny1cg4W7flf1CRXQorW7eVezQiG4cuAji/8qyk/IV90BOqF2xqG4pK3SiB3nmLRFg2IdlQBUHaOPK/bgI6Oi5CY5UJd+S5Ft91bDns7lvz0FoxGE8YMuxw5xjzI9ZyQ0xeWTN+XfNASHsl0g6fL9OOJXaNw8cubdFEwABBZtU2V7bpdRjjdkxCX3keV7feWx+NG0YaP8e7ax7EjfD3kFJ5G6w1Tok33U/wfwpLpRlJ4EhJtiaJj0ElEecPw+soC5H6wWpWpVtQStm2Fatt22k3wSpMRk6Kt2cQ3bf0W7xf9A+ulJXCnA5BEJ9I+S0606AiKYcmcQF5CnugIdAIDXAl49dNURC7bIDpKrxkbaxAdq95ZakeHBZJlGqISklXbh69K96zGRyuexPLORbBnuAAT2+ZEwnJiREdQDEvmBEaniBkaSid3cUc/PPGGG9KO3aKj+Cwu3K7q9u1tFliirkREbLyq+/HVwcqd+LTwGXxd+yZa09sgWXkq7VhhPJIJfmPTA3+jG53czJph+M2c/fDW1YuO4pdou/pLlLc32xAefzVsUdp9s2pqqsR/V7yIT/a9gLqUGkh+zu0WLAxRZpgUXKjsn//8JyRJwr333qvYNnuDJXMCg+IGId6qzU+CoUaSgae3j8J5r62H7PBvOWItiDwQmIXSWhvDEZU6A2HhEQHZn6/snS34vmgePtj6FCri90KKD+050sL6KneqbM2aNZg7dy6GDRN3LxVL5gQkScKZaWeKjhHy4rw2vPFjHrI+WS06imLCtq2EFKDLES11kYjLmgGz1RqYHfrB43Fixbr38e762dgZsQlIDs0jm7D+sYpsp62tDddffz1eeeUVxMXFKbJNX7BkTuKs9LNERwhp+c5kzP0oAbaVm0VHUZShtQHRcYF7A22qiUFS3xkwmnUyJFaWsaH4K7z302xsMP4IT5oUUiPSrP2VKYSZM2fi0ksvxQUXXKDI9nwVmh8VeojXZcS5vHUAfr2gEnLjQdFRVBFv7UQzAndaqKEqHqkDr0Hljnfg9QR+0TZf7dy1Cjt3rUJmRh5G952IsCpzUC8RbUqwwhTv/1Hnu+++i/Xr12PNmjUKpPIPj2ROIjk8GbkxuaJjhJz7K0fghrm7IDc2iY6imqiOAwHfZ/3BJKQPuRqSQX8v+4oD2/BJ4dP4rmE+2tLbIYXp7+/QE2ED/D+KKS8vxz333IMFCxbAqoHTpJKsxqIsQeTJ1U9i/vb5omOEBJNswH+KhyNlsfhPX2rrHH0JVkVOFrLvpKwKlG/5QFc3sR4rIiIOY4dNQ2JbKuQ2/RyZnUrCDUNgG+rfjeCffPIJpk6dCqPxyNBwj8cDSZJgMBjgcDiO+jO1sWRO4ceKHzHz+5miYwS9ZE8knlmSAcuaraKjBIQ3IhrLzngCsqDVCJKz9qJs8yIxO1eQ2WzFGcOnItObC7lR53OkGYD0h8fCYPXvKkZrayv2799/1GO33HILBg8ejFmzZmHo0KF+bb+3eE3mFMakjoHZYIbLq/MnsIad5kzDAx/JkPeFRsEAgKG9BbHxJjTWifkUXlPeF9nDL0PZpsVC9q8Ul8uOwrXvQJIMOK1gInKtI4BafR7ZhOXE+F0wABAVFXVckURERCAhISHgBQPwmswp2Uw2DgBQ0dUtg/HAK82Q91WIjhJwcRaxq3bWlA1EdsHFQjMoRZa9WLv5C7y3ejY2m1fCk2bQ3Yi08BHamwpICTxd1gOL9yzGg8sfFB0j6PylfCSGv7sBcOvzk6e/6i//PTa19BcdA0kZG1BevER0DMX1yRqGUX0ugqXKpP0RaSYJ6X85EwZb8J1c4pFMD0zImgCbKTgWENKCMNmIl9aPwPD5a0K2YAAgolwb9//UHBiBzLxzRMdQ3P7yzVhU+G/80PQu2tM7IVm0+3ZnHRQflAUDsGR6JNwcjvMyzxMdIyhkeKIx76t+SPh6regowoVtWwmDUfw5HQkS6irHIGPw6aKjqKK2bh8Wr3gOXxx4GY2pDZDCtfdmHj4iSXQE1bBkemhi34miI+jeWHsmnl0QBtPG7aKjaILk6ERcvFZmIJbQUHM20gaMEB1ENa1t9fhm1Sv4eOczqEysgBSrjTnSpDAjbIMTRMdQjfYqXaPGZYxDtCUaLc4W0VF06ddNebj8rd2Q28Ve7NaaOFMr6qGNU7GyLKG5cTxS+rlQvSd4R/o5XZ34cc0CSJIBY4Zdhr6WAkDQKD8AsA1NhGQO3s/7wfs3U5jZaMYFfcTOAaRXf9s7CpPnFrNguhHVuv/U3xRAXo8BbW0XIKnPQNFRVCfLXqze9BneWzMbxWE/wZsq5u0wfGTwnioDWDK9wlNmvRPuNePV1cMw+N3VgFfQXYcaZ9u/UXSE43hcRtgdExGf0Vd0lIDZumMpPlj1BFZ7v4Yr3Ruwd0ZDlAVh/WIDszNBWDK9cHrq6UiyBfenDqXkuGPx+uJMRH+/XnQUTbOUrIZRg6dKXA4j3N7JiE3NFB0loPbu34iPVzyFpa0foiPDAaj8bxM+PAmSQfzgDzVp79mtYQbJgItzguPmNTWd35mDp94ywLC1VHQUzTM4HYiL0+bL0Gk3AaYpiE5KFR0l4KprduPzwmfx36pX0ZTWBMmmzgCNYB5Vdog2n90adtXAq0RH0LTf1g3F7+ZWQK6uER1FN+KMzaIjnJC93QKT7UpExPk3aaNetbbU4uuVc7Foz/+iOqkSUrRyY6VMSTZYMqMU255WsWR6KTc2lytmdkOSgX+WjsIFr26C3GkXHUdXopr2io5wUh2tYbDGToctOlZ0FGEc9nYsXf0WPih+EvtjSyEl+D/8OVinkTkWS8YH1w+5XnQETYnyhuH1lUPR78PVup4+XpTwfdq/btXeZENU8tUIi4gUHUUoj8eNog0f4921j2O7bR3kVB9PoxkkhJ+Womw4jWLJ+ODczHORFZUlOoYmDHIl4tVPUhDx40bRUXTLvHMdTBqe8uSQlvpIxGbMgNmqjft6RNu87Tu8v+ofWIcf4E5HrybktBUkwhQbplo2LdH+M1uDDJIB1w6+VnQM4S5pz8XsN5yQSvaIjqJrkseN+Dh9jDBqro1GYs61MFksoqNoxq69a/DRiifxY8fHsGc4AdOp/y2jzskIQDJtYMn4aGr/qQg3hYuOIcxdNcNx29x98NY1iI4SFOIMTaIj9FhjdSxS+l8Lo4kThvxSZVUpPi38D76ufQMt6a2QrN2fSrPkRMOSFfwX/A9hyfgo0hKJy3MvFx0j4IyQ8My2kRj32jrIDofoOEEjskFfR4P1lQlIGzwDhgAu46sXTU1V+HLF/+GTfS+gNqUaUtTRZRxKRzEAS8Yv1w+5HpLeVkbyQ4I3HG8sGYzMT9eIjhJ0bLv19/+07kAyMvKmQ5L4NtIde2cLfih6Ax9sfQrl8XsgxZthjLfCmhe8k2F2h88OP+TE5OCsjLNExwiIAmcyXvogDmFFW0RHCUrm3RthOcHpFS2rrUhHVsE00TE0zeNxYuW6D/Du+tloP9MT9Hf4H4sl46cb824UHUF1V7QNwMOvdwB7tDWZYzCRZBnxsfoc/l1Tno3s4VeIjqF54dExyDlzlOgYAceS8dNZ6WdhVHLwPnH+eHAErn+pFHJjk+goQS8W+h1EUVOWi+xhnED2ZEZfNjUkR+WxZBRw58g7RUdQnEk24IXNIzHmzbUhvURyIEXW7xIdwS815UOQVfAr0TE0yRoZheEXTRIdQwiWjALGpI7B2LSxomMoJtkbgTe/7Y/kL/R3MVrPbKX6//9dWzEcWfnnio6hOSMvmQxLiN7EypJRyF0j7xIdQRGjHel48Z1ImNdtEx0l5Jj3FSMsXH8X/49Vc/A0ZAzh/H6HWGw2jJoYerc7HMKSUUhBUgHGZ40XHcMv1zQPxqxXGiGXHRAdJWTFx+h/cTcJEuqrxyJt4Gmio2jCiIsvgzUydOd8Y8ko6M4Rd+r2vpmHykbiyrnbIbe2io4S0mI99aIjKEOW0NQwDim5BaKTCBURG4czpkwXHUMoloyCBsUP0t2iZmGyEXPWjUDBgjWAxyM6TsiLrA+ehd5kjwFtLROQlDNIdBRhxl13Myy20J1+CmDJKO53I34Ho6SP8+qZ7hi88WUO4r9ZKzoK/cy28yfRERTlcRvR2XkJErJyRUcJuNT+A5F37gTRMYRjySisb0xfTM6dLDrGKZ1tz8J/Fphh3FQiOgr9gqm8BLbI4Jp40u00wuW+FHFp2aKjBI4kYcIt/wNJ0ufpcyWxZFRwz6h7EGnW7oW+mxrzce/LNZAPVomOQt2Ijwq++5KcdhO8hssRk5wmOkpA5J87AWn9Q/c04S+xZFSQaEvU7A2aj+8ZhUtf3gK5vV10FDqBGHet6AiqcHRYYLBOQ2R8kugoqrLYbBh33c2iY2gGS0YlMwbNwJD4IaJjHBbuNePVomEY+N5qwKv/YbLBLLI2eE9hdraGwRI9HeExcaKjqObMaTMQERu8f7/eYsmoxGgw4qEzH4JBA9Og93PH4fXPMxC9RPtryRNgKykSHUFVHc1WhCdeA2tktOgoiotLy8CoSaF742V3xL8DBrGCpAJcOeBKoRkmdOTgybcAwzZ9z4sVSoyVexERHVwX/4/V1hCOmLQZQTe8d/xNv4HRZBYdQ1NYMiq7Z9Q9iLfGC9n3/9QV4I6XKyBXB+c5/mAWH+kSHUF1zXWRiM++FuYwq+goiug7cjT6jRwjOobmsGRUFhMWg/tOuy+g+5Rk4F87R+FXr26E3GkP6L5JGdHOatERAqKpJgZJuTNgNOv707/BaML4G28XHUOTWDIBcEX/K3BaSmDmcYqRrZhXmI+cj1YDsj4XwSIgsnqH6AgB01AZj9SBM2Aw6uMm5u6cdukViE/PEB1Dk1gyAfLXM/4Kk0Hd8+yDXYl45eMkhBduUnU/pD7r9pWiIwRU/cEkZORdDUkDA2V6KyEzG2dNv150DM3S37+oTvWP66/qcgCT2nPx93lOYOde1fZBgWOsO4DImOC++H+s2oo0ZBVcCejoLnmjyYRJd/0hJFe87CmWTADdkn8Lzkg9Q/Ht3lM9HLfM2Qu5Xr/L99Lx4iOcoiMEXE15FrILrhAdo8fGXnUdknP6iY6haSyZAJIkCbPPmY2YsBhFtmeEhGe3jsTZr6+D7Ay9N6RgF+OoFB1BiJryfsgedqnoGKeUPigPY64Qe4uCHrBkAiwlIgWPjn3U7+0keMPxxg+Dkf6Z/pfspe5FVIbu6qQ15YOQXXCh6BgnZLbaMHHmfTAY9DtYIVBYMgJc0OcCTBswzeefH+ZMwZz3YxH20xYFU5HWhG1fCZ2ugaeImooCZA0dLzpGt86/+XbEpqSKjqELLBlBZo2ZhZzonF7/3LTWgXjotTbIe8uUD0WaYmysQXRsaF38P1bNgZHIzDtLdIyjDDlnPArOv0h0DN1gyQgSbg7HP8f9s1fDmmcdGIkZc3ZCbmpWMRlpSbwttG+mlSChruoMpA/Sxp30cWnpuOD2maJj6ApLRqD8xHzMHHHqJ6xFNuLFjSNw2ltrAHfwrTVCJxbdeVB0BPFkCY11ZyO1/3ChMYxmMy69ZxYsVpvQHHrDkhHs1qG34qz0E58OSPVEYt63uUj6kkskh6LwA7zuBgCy14CW5vOR3DdPWIbzbrgVKX39X0b6wIEDuOGGG5CQkACbzYaCggKsXRu8r2+WjGAGyYB/nfsvZEVlHfdnpzsy8Pw7ETCvC91RRqHOum2lnu5NVJXXbUB7+4VIzB4Q8H33HzMWIy/xf1n1xsZGnH322TCbzfjyyy+xbds2PP3004iLC971ZyRZ5gRXWlDaWIob/nsDOtwdAIDrmodg6tt7Ibe2CU5Goq2fNhdNDTxNeojF6obJ8BkaDuwLyP6S+vTFjMeeVGRZggceeAArVqzA8uXLFUimDzyS0YgBcQMw+5zZkCDh4f0jMWXuNhYMAQDirB2iI2iK026CB5MRk6L+hJSR8QmY+sAjiq1789lnn2H06NGYPn06kpOTMXLkSLzyyiuKbFurWDIackGfC/BezP0YunAN4PGIjkMaEd1xQHQEzXF0mGEwT0FUYopq+7DYbJg66xFExScqts09e/bgpZdewoABA/D111/jjjvuwN13340333xTsX1oDU+XaYwsyzh4//1o+e+XoqOQRthHXYiV0VNEx9Ck8Gg7HC3vob2xXtHtGoxGTJ31CHKGj1J0uxaLBaNHj8bKlUdm2b777ruxZs0arFq1StF9aQWPZDRGkiSkPfEEbMPFDtck7bBsXwWDgVf/u9PRYoUt9mrYopSZD/CQC34zU/GCAYC0tDTk5R09Qm7IkCEoKwvem6tZMhpkCAtD5v+9CHN6uugopAGGzjbExnOOrBNpa7IhKuUahEVEKrK9M6Zeg4IJ6tzRf/bZZ6OkpOSox3bu3Ik+ffqosj8tYMlolCkhAVkvz4UxNlZ0FNKAOEu76Aia1lIfibjMGTBbrX5tZ8g543HOjF8rlOp4v//971FUVIR//OMf2LVrFxYuXIiXX34ZM2cG7ywCvCajcZ3FW1F2883wtnGkWShruPxebGwJ/P0hehOX0ojaPQvg9mHpi6y8Alz5l7/BaDKrkOyIxYsX48EHH0RpaSn69u2L++67D7fffruq+xSJJaMDHevWoew3t0Pu7BQdhQSxjzgfK2OvEh1DFxLS6lC1cyE8vZiCKT4jC9f+/SlYFTrlRkfwdJkOhJ92GjKffx6SWd1PWKRdYdtWwWDkxf+eqK9MRPrgayAZevb2Fh4Ti2kPPMqCUQlLRicizzkb6c88DZhCe+r3UCU57Yjjxf8eqz2Qgsyh03GqOXnCwiMwddYjiElW736bUMeS0ZHoCy9E+j9mn/KFQ8EpztQqOoKu1JZnILvgxIsDWiMicdVfH0dqLq91qYklozMxl1+O1EceFh2DBIhq3Sc6gu7UlPdB9rDLj3vcGhWNqx6azYIJAJaMDsXNmIHkB2aJjkEBFr5vo+gIulRT3h/Zwy45/LUtOgZXPzRbkWn76dRYMjqVcPPNSHv874CR5+lDhXnHapjMfMn6oqY8D1lDJyA8JhZXP/wPJPXpKzpSyOAzVsdir7oKGc/+B5LFIjoKBYDB7URcHK/H+aqz4wxc89gzSMwK3rvrtYglo3PRF16IrJdfhiEiQnQUCoBYY7PoCLoUk2zD1D+MQnxasugoIYclEwQizjwD2W++CWN8vOgopLKopn2iI+hOYlYkpv3hNEQn2ERHCUksmSBhG5qPPgvmw5SeJjoKqci2d53oCLqS1j8GU+4bhfBonlIWhSUTRML69kXOwoWw9OeomWBl2bkO5jC+bHti0JmpuOKekQiz8QZmkfhsDTLm1FTkzJ+P8DPOEB2FVCB5PYiP5cX/k5EkYOy0XFxwcx6MHI0nHP8FgpAxNhbZr72KuBvVm7KcxImVGkVH0CyL1YhJvxuGURdxBJlWsGSClGQyIfXPf0baP5+AFBYmOg4pKLJxj+gImhSdZMOVfxqNnIJE0VHoF1gyQS52yhT0mT8fpjQOCAgW4bvWiI6gORmDYjH9gdGIT+dQfq1hyYQAW8FQ9P3wA9hGnyY6CinAtGcTLFbO9HDI0HMzcPndI2CN4FIYWsSSCRGmhAT0mTcPcdddJzoK+UmSZSTEca1Bk9mA8dcPwnnXDYLByLcyreK/TAiRzGakPvwQ0mbPhhQeLjoO+SHGWy86glAJGZGY/uAY5I/LEB2FToElE4Jir5yGfh9/BOvwYaKjkI8i63eJjiCGBAyfkMXrLzoiybLM4+4QJbvdqJszF3Vz5gC9WA+dxHP1ycPyvjNFxwio8GgLfnXTEGTnJ4iOQr3AkiF0bt6Mg3/8E5z794uOQr2wctIc2Ds8omMERE5BAibcOAS2KE4Pozc8XUawDRuGvp8sQuyMa0RHoV6Ij/GKjqA6k9mAc2cMxKUzh7NgdIolQwAAg82GtEcfReacl2BM5M1sehDrrRMdQVUpfaNx1YOjUTA+U3QU8gNPl9Fx3I2NqPnXU2j+5BOATw/Nap1wA9Z4x4qOobiwcBPOnJKL/HPSIRk4T5vesWTohDrWr0fV3/4Ox44doqNQN9wZ/fHjgN+LjqGoQWem4qxp/Tk1fxBhydBJyR4PGhcsRO3zz8Pb2io6Dh2j6LK56GjT/8jAuNRwnHfdIGQMjBMdhRTGkqEecdfVoeapp9D86Weio9AvlFz7Ig5Uik7hO5PFgNGTcjDiwmwYedd+UGLJUK90rF3bdQpt507RUQhA1fRHsa02SXQMn+QMS8S4qwcgOpHLIgczlgz1mux2o/G991A3Zw48tcE9wknr2s+bgZ+kcaJj9EpyTjTGTs1F5iCeGgsFLBnymdduR+OChah/9VV4GrmQlgjulD74ccifRMfokdiUcJx5RT/kjkoWHYUCiCVDfvO2t6Ph7bdR//o8eFtaRMcJOT9dPhftLdq9+B8Vb8XoSTkYPDaVsyWHIJYMKcbT0oL6efPQ+Nbb8La3i44TMkqvewHlB7V3P0lkXBhOm5iDIWen8aJ+CGPJkOLcjY2of/VVNC58B3Jnp+g4Qa/mqodQXJcqOsZhUQlWjLwwG3nnpMNoYrmEOpYMqcbT1ISmDz9Ew8KFcB/U8ThbjWs/50r8ZJogOgbSB8Ri+IQs5AxPhIF36tPPWDKkOtnjQet336Ph7bfQuXad6DhBxxufiqXDHhKyb6PJgAFjkjFsQhaSsqKEZCBtY8lQQNm3b0fD2/PRsngxZKdTdJygsWbKXLQ2Be7if3i0BUPPy0D+uAxOAUMnxZIhIdwNDWh6/300vvMu3NXVouPo3u7rnsP+g0bV95OcE42C8RkYMDqF11uoR1gyJJTs9aJ95So0f/opWr/7jgMFfFQ77UFsaVBnSvyYJBsGnp6CgaenIjYlXJV9UPBiyZBmeNvb0fLNt2j5/DO0/7Qa8ITGqo9K6Bh7BYrCLlJse7ZoCwaMTsbAMalI6Rut2HZPxuPx4NFHH8X8+fNRVVWF9PR03HzzzfjrX/8KSeJAAr0yiQ5AdIghIgKxU6cgduoUuOvr0frNN2j575foWLcO8Ab/KpD+sG5bAYy6CPDjI6PZakS/EUkYeHoKMgfHB3yE2JNPPomXXnoJb775JvLz87F27VrccsstiImJwd133x3QLKQcHsmQ5rmqa9C2bCnaC1egvaiIswqcwLqpL6O50dWrn4lOtCI7LwFZefHIzouHyaL+dZ0Tueyyy5CSkoLXXnvt8GNXXnklbDYb5s+fLywX+YdHMqR55pRkxF19NeKuvhqyx4POTZvRXliItsJC2IuLeZTzszhbJ5obT/6SNocZkTEoDtl58cjKi0dssnausZx11ll4+eWXsXPnTgwcOBCbNm1CYWEhnnnmGdHRyA8sGdIVyWhE+KiRCB81Ekl33wV3YyM6Vq1CW+EKtK9cCXdVleiIwkR3HgDQ5+gHJSAxM/LnUklAWm6MZkeFPfDAA2hpacHgwYNhNBrh8Xgwe/ZsXH/99aKjkR9YMqRrprg4RE+ahOhJkwAArupq2LdsQeeW4q7ft26Ft7lZcMrAiDhQDGtSf6T0je76lRON5JxoWCPMoqP1yPvvv48FCxZg4cKFyM/Px8aNG3HvvfciPT0dN910k+h45CNek6Gg59y//0jpFBfDsX07vB0domP5zZSUhLC8IbAOGQLrkDyE5eUhLEudYcyBkJWVhQceeAAzZ848/Njjjz+O+fPnY8eOHQKTkT94JENBz9KnDyx9+iDmsksPP+aurYWzvBzOsjK4ysrhLC+Hq6wMzvJyeBoaBKb9BaMR5tRUmLOzYMnMgjkrC5bsLJgzs2DJyoQxJkZ0QkV1dHTAYDj6VJ7RaISX19x0jSVDIcmUlARTUhLCR4067s88be1wlZfBVVkJT1MzPM3N8DQ3wdvS8ouvf/7V0gK5o+PIyOFfnhg49N8//y5ZLDBGR8MYEw1DdEzXf0dHHfnvmGgYoqNhSkqCJSsL5vR0SKbQeYlOnjwZs2fPRnZ2NvLz87FhwwY888wzuPXWW0VHIz/wdBmp7qWXXsJLL72Effv2AQDy8/Px8MMPY+LEiWKDkaa0trbioYcewqJFi1BTU4P09HRce+21ePjhh2GxcH40vWLJkOo+//xzGI1GDBgwALIs480338RTTz2FDRs2ID8/X3Q8IlIRS4aEiI+Px1NPPYXbbrtNdBQiUlHonPAlTfB4PPjggw/Q3t6OsWPHio5DRCpjyVBAbNmyBWPHjoXdbkdkZCQWLVqEvLw80bGISGU8XUYB4XQ6UVZWhubmZnz44Yd49dVXsWzZMhYNUZBjyZAQF1xwAXJzczF37lzRUYhIRdqcxIiCntfrhcPhEB2DiFTGazKkugcffBATJ05EdnY2WltbsXDhQixduhRff/216GhEpDKWDKmupqYGN954IyorKxETE4Nhw4bh66+/xoUXXig6GhGpjNdkiIhINbwmQ0REqmHJEBGRalgyRESkGpYMERGphiVDRESqYckQEZFqWDJERKQalgwREamGJUNERKphyRARkWpYMkREpBqWDBERqYYlQ0REqmHJEBGRalgyRESkGpYMERGphiVDRESqYckQEZFqWDJERKQalgwREamGJUNERKphyRARkWpYMkREpBqWDBERqYYlQ0REqmHJEBGRalgyRESkGpYMERGphiVDRESqYckQEZFqWDJERKQalgwREamGJUNERKphyRARkWpYMkREpBqWDBERqeb/A6lEXf6qXLbQAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dane['Smoking'].value_counts().plot(kind = 'pie')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "86122d04",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Passive Smoker\n",
" 1 60\n",
" 2 284\n",
" 3 140\n",
" 4 161\n",
" 5 30\n",
" 6 30\n",
" 7 187\n",
" 8 108\n",
" dtype: int64]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane4 = [dane.groupby('Passive Smoker').size()]\n",
"dane4"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c78bbd4c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: ylabel='count'>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGFCAYAAAAvsY4uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH4ElEQVR4nO3dd3xUVd4G8OdOn2Rm0nslIQUSehEQERAFBRQLNlxdyxYX13Utq667lndF13ffdW27rKIiiqiggmVFFClK70gn1PRkMpmZTK/3/SPC0gLJzL1zZu78vp8PH2WS3PsASZ7ce849h+N5ngchhBAiAhnrAIQQQqSLSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIRsE6ACHRrsPtQ2uHG0abF3aPH06vHw5PAE6vH05vAA6vH05PAC5fADwPyDhALuPAcRzkMkDGcSd/JajkSNIqkaRVwqBVwqBVnP57jZL1H5cQQVHJkLgWCPKoa3fiUKsdx0wOtHS40dLhQXOHG60dbrTaPHB6AxHLo1bIkJesRV6KtvO/P/1/fkoC8lK0yDZoIJdxEctDSLg4nud51iEIEZvXH0RNqw2HWu04bHTgcKsdh1rtOGpywOsPso7XbWqFDL0zdajI1qNPtgGVOXpUZOuRqdewjkbIOVHJEOnhecB4AB/XJmB7nRU/1ltxoNkGbyB2yqSn0hJVqMjWoyrXgEGFKRhalIJMAxUPYY9KhsQ+nxto2ArUbQBqNwL1mwCXGffqX8FSYzrrdMzkJWsxrDgFw3ulYURJKkoydKwjkThEJUNik7UeOPg1cHAZcPQHwO86610+zXsEDx4exCBcdMrUqzGyNA3jKjIxtiIDyQkq1pFIHKCSIbEhGATqN3cWS803QMvuC37IkfxrMf7Q9AiEiz1yGYfBhckYX5mFy/pkojxLzzoSkSgqGRK93Fbg0PLOq5VDywGnqUcf7kmpQEXTUyKFk5b8FC3GV2biir7ZGFWaBhnNYCMCoZIh0SXgB2qWAdvf77xiCfpCPhTPyTAy+DaaPXRbqCcy9WpMHZCLawfloToviXUcEuOoZEh0aNnTWSy7FgIOo2CHfS79r3ijvlCw48Wbskwdpg3KwzUDc5GfksA6DolBVDKEHWc7sOtjYMd8oGmnKKf4oeDX+FnNGFGOHU84DhhalIIbhxZg6oBcaJRy1pFIjKCSIZEVDHaOr+yYDxxYCgS8op7OmDsew47cI+o54k1qogo3Di3Az0YWIS9ZyzoOiXJUMiQy/B5gxwJg/WuA6VDEThtMSEdJ+ysRO188kcs4jK/MxB0jizG6LH6fRyLnRyVDxOW2ApvfAjb+G7C3MIlwo+bf2GQxMDl3vOidqcMdI4swfWgB3Uojp6GSIeLoaAI2/BPY8g7gtTGN8k7On/H00T5MM8SLDL0av7ykBDNGFCJBRevvEioZIjTjQWDdy8CPC0Ufb+muPQW3YHLNVNYx4kpaogp3X9ILt48shk5NZRPPaNMyIozW/cCHM4B/Dge2z4+aggGAYvc+1hHijsnhxf9+fQCjX1iBV76rQYc79OedhPb8889j2LBh0Ov1yMzMxLRp03DgwAHWsSSLrmRIeOytwMpZwLb3AD5y+670BC9Xodr9FhwBGitgRa9R4FdjSnDPJSXMx2wmTZqEm2++GcOGDYPf78cf//hH7N69G3v37kViYiLTbFJEJUNC43MB614D1r7MfMylOx5JfhGLmrNZx4h7uUkaPDKpAtMG5oHjomPpGqPRiMzMTKxevRpjxtAzVUKj22WkZ4LBzqnIrw4BVj4bEwUDAON1x1lHIAAarW78/qOdmPbPtdh0tJ11HACA1WoFAKSmpjJOIk10JUO678hq4Js/Ac0/sk7SY/X5kzH60AzWMcgZJlVl4/GrKlGUxuY2VTAYxNVXXw2LxYI1a9YwySB1NO2DXJjpMPD1450LV8ao7I5drCOQc/h6TzNW7G/FXaN74YEJZREfr5k5cyZ2795NBSMiupIhXQsGgHWvAqueB/xu1mnCdpnsLRx20jIo0aooLQHPXdsPF/eOzOoB9913Hz777DN8//336NWrV0TOGY9oTIacW8te4M0JwPKnJFEwAHBNeiPrCOQ8jpucmPHmRjy0cCfMDvGmwPM8j/vuuw+LFy/GihUrqGBERiVDThfwAateAN64FGjcxjqNoEaqj7KOQLrhk231mPDiany2o0GU48+cORPz58/HggULoNfr0dzcjObmZrhcZ2/hTcJHt8vIfzXuAD67D2iR5viFJXsUBh67j3UM0gOXlmfguev6Cbrac1dTp+fOnYuf//zngp2HdKKSIZ0rJK/6K7DuFSDoZ51GNLxaj94dsxHg6QI+lhg0Cjx3XT9M6Z/LOgoJAZVMvGvYBiz+NdAWH8tq3JP4Gpab6HmIWHTDkHw8c3UVEmkttJhCP9LFs01zgLcnxk3BAMDEpFrWEUiIPt5ajymvrsGP9RbWUUgPUMnEI68D+OQe4KuHo2ohy0gYJD/MOgIJw9E2B66fvQ6zVx1GMEg3YWIBlUyEFBcXg+O4s37NnDkzskGMB4A3xgG7FkX2vFEi37GHdQQSJl+Axwtf78dtb22E0eZhHYdcAI3JRIjRaEQg8N9Vinfv3o3LL78cK1euxNixYyMTYtfHwOf3Az5HZM4XhXhOhuGBuTB6layjEAFkGzT4122DMbgwhXUU0gW6komQjIwMZGdnn/z15ZdforS0FJdeeqn4J/d7gS8fBD65O64LBgA4PoipGc2sYxCBNHe4cfPrG/D+RloANVpRyTDg9Xoxf/583HXXXeIvd26p7Rzc3/KWuOeJIWMS6BuSlHgDQTyxeDce/3QXfIEg6zjkDFQyDCxZsgQWi0X8B7+OrwdeHyO5J/fD1ScQP7Pp4skHm2ox482NaBdxSRrSczQmw8DEiROhUqnwxRdfiHeSvZ8Dn/5CMuuOCSmQmIlS00usYxCR5Kdo8eYdQ1GZbWAdhYCuZCLu+PHjWL58Oe655x7xTrLxDWDRHVQwXZA7WjE4KTY2WyM9V292Yfq/12PDERPrKARUMhE3d+5cZGZmYvLkycIfnOeBb58Elj4C8HRv+nwmp4qz+CKJDja3H7e/vQlLdzWxjhL3qGQiKBgMYu7cubjjjjugUAi8NEbAByz+FbD2ZWGPK1HDFfRQptR5/UHMXLAN760/xjpKXKOSiaDly5ejtrYWd911l7AH9tiA928AfvxI2ONKWC/PftYRSAQEeeDPn+3B37+hyR6s0MB/rLM1dxZMszSX5xcLr9Cgr2sOXIHIbvdL2Ll5WAFmXdsPcpnIjw2Q09CVTCxrPwq8dTkVTAg4vxtXprexjkEi6MPNdZj5/jb46VmaiKKSiVXtR4F3pnQ+bElCcpme/u7izdd7mvHbD7ZT0UQQlUwsMh8D5k0FOupZJ4lp/VDDOgJhYOnuZvzuwx1UNBFCJRNrzMeBd6YC1jrWSWJejo1WZI5X/9nVhAc+2oEAbRcgOiqZWGJtAOZNAax0m0cISutRFGvpgdV49eWPTfg9FY3oqGRihd0IvHsNjcEI7JqMRtYRCEOf72zEQwt30AZoIqKSiQUuC/DetYCJxhCENkp9jHUEwtiSHY14YgnN0BQLlUy089g7n4NpoS8CMZT56KFMAnywqQ6vfEc/xImBSiaaBfzAwp8B9ZtZJ5GsFPMucBzdKiHAi98exKItNKFGaFQy0ezrR4HDK1inkDTOY8WlKRbWMUiUePzTXVh90Mg6hqRQyUSrTXOAzW+yThEXJiXT80akkz/I4zfzt2J3g5V1FMmgkolGh1cAXz/GOkXcGCw/xDoCiSIObwB3vrMZde1O1lEkgUom2rTVAIt+DgT9rJPEjQLnXtYRSJQx2jy4853NsHvo6zBcVDLRxNkOLLgRcNOleiRp2vcjRUnfTMjpDrXa8dDCHaCF6sNDJRMtAn5g4e1A+xHWSeIOxwdwdUYL6xgkCi3b04J/raIN7sJBJRMtvnoYOPYD6xRx69LEY6wjkCj1928O0IyzMFDJRINNc4Ctc1mniGt9gwdZRyBRKsgDv/twO00ECBGVDGtNPwLL/sg6RdzLsNCKCqRrFqcPv3xvK9y+AOsoMYdKhiWvE/jkbiDgZZ0k7skdzehvsLOOQaLYvqYOPP4p/TDSU1QyLC17HGij2zTRYkpqA+sIJMot3t6AT7bSw7s9QSXDyr4vgK3vsE5BTnGRimb2kQt7+vM9ND7TA1QyLHQ0Ap//lnUKcoYS9z7WEUgMsHn8eHAhbXbWXVQykRYMAot/BbjMrJOQM+ja90Ato33fyYVtPmbG7FW0HFF3UMlE2rqXgaPfs05BzoHzuzAxvY11DBIjXv6uBj/WW1jHiHpUMpHUsA1YMYt1CnIeEwy0nwjpHl+AxwMf7oDLS9Oaz4dKJlJ8buCTe4Cgj3USch79Qbsjku470ubAc1/RWN75UMlEyg9/B9ppDaRol2vfwzoCiTHzNx7HtloaY+0KlUwktB0C1r7MOgXpBqXlCPI1HtYxSAzheeCPn+6CP0CTRs6FSiYSvnoICNA3rljAgcc1GU2sY5AYs7/ZhjfXHGUdIypRyYht18fAkVWsU5AeGK05xjoCiUEvL6+hhzTPgUpGTO4OYNkTrFOQHir372cdgcQgly+AJz/bzTpG1KGSEdPKWYC9mXUK0kMpZloEkYRm5QEj/vMj3W49FZWMWJp2du4TQ2KOzG3GJakW1jFIjHrmiz1weGg77xOoZMQQDAJf/h7g6SGtWDUpmVbaJaFptXnwxve02OoJVDJi2DYPaNjKOgUJwxA5PdNEQjfnhyNotblZx4gKVDJC87mAVX9lnYKEqdC1l3UEEsOc3gD+8S2tHgFQyQhv0xwa7JcAbft+JCnpvjoJ3cItdTjUamMdgzkqGSF57MDal1inIALggj5MSW9lHYPEsECQx1+X0nR4KhkhbZgNOE2sUxCBjE08zjoCiXHL97Viw5H4/p5AJSMUlwVY/yrrFERAVTzdUyfhez7OV2mmkhHKulcBt5V1CiKgzA56KJOEb2e9Fd/ta2EdgxkqGSE4TMDGf7NOQQSmsDWgSu9gHYNIwCsr4nerZioZIax5EfDaWacgIpiS2sg6ApGAnXUWrD5oZB2DCSqZcNmagc1vsU5BRDJCRU9uE2G8tiI+x/ioZMK19hXA72Kdgoik1EtTUIkwNh8zY8uxdtYxIo5KJhxeB7B9PusURET69t1QynjWMYhE/Ht1/C1XRCUTjp0fAB6aUSZlnM+By9Pi+zkHIpzv9rfiYEt8rQJAJRMOWso/LlxuqGUdgUgEzwNv/hBf43xUMqE6sgow0v36eDBQFr/TT4nwvtjZBKvLxzpGxFDJhGrjG6wTkAjJte9hHYFIiMsXwCdb42e/IiqZUJiPAweXsk5BIkRlPoQcjZd1DCIh8zfGz7p4VDKh2PwmwAdZpyARwoHHNem0bzsRzhGjA+sOtbGOERFUMj3lcwHb32OdgkTYaO0x1hGIxMTL1QyVTE/9uBBwmVmnIBFW6T/AOgKRmG/2tKC1Q/pbNFPJ9NTWuawTEAZSLbQiMxGWP8jjg011rGOIjkqmJ0yHgcbtrFMQBmQuE0am0IO3RFiLt0t/lhmVTE/s+ZR1AsLQlcnS/4ZAIuuYyYkf6y2sY4iKSqYndlPJxLOhivh6UptExuc7pL2dBJVMd7XuA1r3sk5BGCpy0b8/Ed6XPzYhGJTuIqxUMt1FVzFxL8G8D4mKAOsYRGKaO9zYJOEtAKhkuovGY+IeF/BiakYr6xhEgj7fKd1bZlQy3dG0EzDRIokEGJdIKzIT4S3d1QRfQJqriFDJdMfuT1gnIFGimj/IOgKRILPThzUSXWaGSqY7di9mnYBEiSzbbtYRiESt3C/NW7FUMhfSsBWw0i0S0knRUYfyRBfrGESCVh6gkolPh1ewTkCizNQ06Q7SEnbq2l04bLSzjiE4KpkLObKadQISZUap6aFMIo5VB4ysIwiOSuZ8fC6gbhPrFCTKlPpo220ijlUSvGVGJXM+tRuAgId1ChJlktp3Qc5Jc7opYWvj0XY4vX7WMQRFJXM+R+lWGTkb57VjQhrtKUSE5/UHsf6wiXUMQVHJnA+Nx5AuXJEk/X1ACBurD0prXIZKpisuC9C0g3UKEqUGcrQCBBHH5mPSukqmkunKsTUAT/fdybnlO/ewjkAk6mCLDXaPdMZlqGS6QuMx5DxU5hpkqn2sYxAJCgR57Ki1sI4hGCqZrtB4DDkPjg/i6oxm1jGIRG09Lp1bZlQy5+JsB9oOsE5BotwY7THWEYhEba2lkpG2pp2sE5AYUBmgFZmJOLbXmsHz0tgtk0rmXGhWGemGdMuPrCMQibK5/TjYIo11zKhkzoWuZEg3yJxGDE2ysY5BJGqbRG6ZUcmcC5UM6abJKfWsIxCJOtAsjR9gqGTO4PA5MLuwD1aUjUZjSiHrOCTKDVPSisxEHAdbpFEyCtYBok2NuQb/su7q/E0yoM/oi/KEHFTItKhwu1FhaUbv1kNQ+91Mc5LoUOzeC2Ay6xhEgqQyJkMlc4YaS81pv7f57NhqrcHWEy+oAXlhDooTc1CuTEaFn0eFw4IK4xFkdLREPC9hK7F9LxLlQTgCdFOACKvN7oHZ4UVKoop1lLBQyZyhxlxzwfcJ8AEcttfjMOqx9MSLaWqk5g5AhTYTFVCj3O1ERXsjSoyHoAhKZ4kIcjou4MGVGUZ83JzFOgqRoAMtNowoSWMdIyxUMmc4ZAl94cN2jxnrPWasP/FCAqDqVYzSxByUKwyo8AVQYTOhovUQkpzSmDlCgMt0x/ExqGSI8GqoZKTnuPW4oMfzBr3YZzuOfSde4ABk6ZGl7YVKdQbKeQUqXHZUtNejsO0oZLQoZ8ypRg2A4axjEAmSwrgMlcwpfAEfjK7I7OXQ4mpDi6sNJ1dI0wHa5DKUJeSgQp6ICq8PFVYjyltrkOCJ/U80Kcvu2M06ApGomtbYn2FGJXOKZmczeLBbysHld+HHjiM4+Ry5AuBy05Cf0BeV6jSUBzhUODtQ0VaLXHMts5zkdMqO4yhJcOGIU8s6CpGYerOLdYSwUcmcosnexDrCWXjwqHM2o87ZjG9PvJh8ytRqToNKjwflNLWaqWvSm/CP2hLWMYjEtHS4wfM8OI5jHSVkVDKnaHQ0so7QbReaWl3p51FhN6PCeBTpNppaLbaR6qP4B6hkiLB8AR5GuweZeg3rKCELqWTGjx+PTz/9FMnJyae93tHRgWnTpmHFihVCZIu4Jkf0Xcn0xDmnVqerkZp3Ymq1ChUuFyrMDehlPExTqwVU5tsP4DLWMYgENVnc8Vcyq1atgtfrPet1t9uNH374IexQrETj7TIhdGdqdaXNhPKWGiS5LAyTxq5k8y5wHA+ej93bGiQ6NVldGFCQzDpGyHpUMj/++N+lzffu3Yvm5v/uDBgIBPD1118jLy9PuHQRFutXMj1xzqnV2QZka0tRoU7/aWq1DZWmehSYjtHU6gvgPB0Yl2rGClMq6yhEYhotsT3O2qOSGThwIDiOA8dxGD9+/Flv12q1ePXVVwULF2nxVDJdaXYZ0ewy/ndqtR7QppShLCEXFfKEn6ZWt6K89RBNrT7DxKR6KhkiuOaOOCqZo0ePgud5lJSUYNOmTcjIyDj5NpVKhczMTMjlcsFDRkqrs5V1hKjUObX68FlTqwsSqlChTj1lavVx5JrrWEZlarD8EID+rGMQiWm0xPY05h6VTFFREQAgGJTerRN/0A+XP7b/MSOJB49aZxNqnU2nTK3mYMisQrk2GxWcFhUed1xNrS5w7AFwHesYRGIsTh/rCGEJeQpzTU0NVq5cidbW1rNK58knnww7WKQ5fA7WESShw2vDFq8NW068oAYUhbk/Ta1O6ly12m5GhfEI0m3SunJUmw8iTeWDyatkHYVIiM0T27NAQyqZOXPm4N5770V6ejqys7NPe1CI47iYLBm7j8YXxOLn/Thkr8Mh1OGrEy+ma5B2ytTqcglMreb4AK5Ob8bcxgLWUYiE2NxxeCXz7LPPYtasWXj00UeFzsOM3UslE2kmjxnrPGasO/HCyanVuahQ6E+uWh1LU6vHJNZiLqhkiHDs7tj8oeuEkErGbDZj+vTpQmdhiq5kokPn1Opj55xaXalJR3mwc2p1halz1WqO4Vpz59I3cADAxaxjEAmxx+PtsunTp+Obb77Br3/9a6HzMENjMtHtxNTqVSde0APalHKUJeSg8qdVq8ujYGp1+omtuwkRiNMbQCDIQy6LzQd9QyqZ3r17489//jM2bNiAfv36Qak8faDz/vvvFyRcJNHtstjT1arVnVOrU1ARkKHC0YEK03HkRGhqtdzRgkEGG7Z36CNyPhIf7G4/khJic0IJx/N8j+839OrVq+sDchyOHDkSVigWFh5YiL9s+AvrGEQkBpX+p6nVGlR4PKiwNKF3yyGoAh7Bz/Vm9lN49liF4Mcl8WvNo+OQn5LAOkZIQrqSOXr0qNA5mHP6nKwjEBGdc2p1Ud5pU6sr7WaUtx5Buj28qdXDlYcBUMkQ4bh9sftsIi31/5MgYvcfkYTmnFOrMzRIyz91arUTleZGFPdganUvz34AV4kVm8ShYM9vOEWNkErmrrvuOu/b33777ZDCsCSDjHUEEiUuPLXaj4oOEypaa2BwWc/6eF37HmjlAbgCsbvEEokucVcyZrP5tN/7fD7s3r0bFovlnAtnxoJY3nmOiO+sqdUyANlJyNH2RsVpU6vrUNh2DBPTTVjSkskwMZGSQDDOSmbx4sVnvRYMBnHvvfeitLQ07FAsyDi6kiE91+QyoumMqdXl+iH4pUWBCWVe8EoNzIEOWF0WBAIBhklJLEuRDWMdIWSCjcnIZDI8+OCDGDt2LP7whz8IddiIoZIhQkgJavGXz7Vo6wuYrV44m5diUNkVSPf1g03ugVnvgUluR5vXjBZLGzwe4We3EemRc3F2JdOVw4cPw++PzadTOdDtMhIeDa/Aa8sLwO3bC01eA0z+4UjJmogfdnwIn9uFyrLR6KMagaJWPeDLAs/xcCbxsCR50K5yoC1gRau1DTYHPbNFTieTxe4PwSGVzIMPPnja73meR1NTE/7zn//gjjvuECRYpNGVDAmHHBxmr6uEcusOAICq+TCQPhzmlhSkFt4Ga+OH2F+zBvtr1kCnS8HQvlORHSxEosmHRIsWedACSAdQCk9iEJYUL8xaF9qCHWh1mNBuMZ/v9ETi4q5ktm/fftrvZTIZMjIy8Pe///2CM8+iFZUMCcerOwYg8fuTT+FAeWx3Z2cAsBr10GfdCpliEZyWdtjtZqza9C4AoKz0IlTljIamVQX+p2ch1A4ZshwaZEEDIAVAEfwqHtY0P8yJLpg4G4wuM4zmNhrniRNxVzIrV64UOgdzVDIkVC8cHIz0pZtOe01mt0CbqIDL0Xn72NaeiMTkmyCXfwKb6b8Pe9Yc3oiawxuRkGDA0KopyEUJ+Lazl3ZXeDmkNSmRBiV6wwAgD0E5D1tq4KdxHhvavBa00jiPJMVdyZxgNBpx4MABAEBFRcVp2zHHGrVczToCiUF/rBuEXp9sOufb9DoerlPWXXVYtdAmTkdy1mewtNSf9r5OZwe+37wAAFBSPATV+WOQ0KYB7+n6IWFZgEOSUYEkowLFSASQDZ7j4UgOwprkhUllR5vPitYOE+w0zhPT4q5kHA4Hfvvb3+Ldd989uSumXC7H7bffjldffRUJCbG3xk6SOol1BBJj7jX2x8AFW7t8e6LcBUB12msuhxoqzXVIy/8Spvpzr/F35NhWHDm2FRqNDkOqJyNf1hswdm9CDcdz0Jnl0JlPjPNkAOgNd2IQllQfzBon2oJWtNrbYbbSOE+sOHMR4lgS8sD/6tWr8cUXX+Diizv3zlizZg3uv/9+PPTQQ5g9e7agISOBSob0xE3WSoybtwsIdn2lkeAzA8g663WvW4GgaioyipfBeGx/lx/vdtuxdstHAICigv7oXzQOiaZE8O6ej8NoHDJkO9TIhhqd4zzF8Kl5dKT5YE5wo43rgNHZOc5z5nbqhC2ZTAaNRsM6RshCWoU5PT0dH3/8McaOHXva6ytXrsSNN94Io9EoVL6IOWY9hqlLprKOQWLARGcJ7plTD955/kVVrRN/ga2egV2+XaYIwpC0Es2Hdnb73CqlFkP6TUahsgJoFf5xgYCchz01ALPeDZPcDqPHjFZLG7xer+DnIt2j0+nw8MMPs44RspCuZJxOJ7Kyzv4JLTMzE84LfOFFK7qSId0x3JOHe95tvWDBAIC69QiQNLDLtwf9MljN45BXqUbD/nOP65zJ63Nh/baPsR5Afl5fDCy+DDqzHrxLmFlm8pPjPDoUQ4dTx3ksSV60Kx1o81vQYm2Dw0kb/UVCuMMPTz/9NJ555pnTXquoqMD+/V1fRQsppJIZOXIknnrqKbz77rsnL+NcLheeeeYZjBw5UtCAkWJQGcCBAx9l2/mS6FHhS8cj77vAmy3den/l8T1A/+vO+z58UAZTy8XIr1Kjfs8PPcpT37AX9Q17oVCoMKT6KhRp+oJrDUDoT+FTx3nyTz7P0xtuXRCWVC/a1U6Ygh1otZtgtlqEPTkRZIy7qqoKy5cvP/l7hSJyC/CHdKaXXnoJkyZNQn5+PgYMGAAA2LlzJ9RqNb755htBA0aKXCaHTqmDzWdjHYVEoZyAHs9+rATf0v0dNuXtzVBp5fBe8CqDQ1vjMBT0U6Nu1/ILvO/Z/H4vNu5Ygo1YgpzsMgwqvQIGazJ4h7irb2jsMmTbNciGBkAqTozzWNN8MCe40AYbjK52tJlNNM4TBiFKRqFQIDs7W4A0IZw7lA/q168fampq8P7775+85LrlllswY8YMaLVaQQNGkkFtoJIhZ0kKavCPL9PAHzvU44/V6ziYXN17X2N9fxT2V6P2x//0+DwnNDXXoKm5BnK5CoOrJ6I4sRqy5qDgVzddUXo4pDeqkA4VypAEIB8BBQ9bWgDmRDdMchuMHjOMFhON83STECVTU1OD3NxcaDQajBw5Es8//zwKCwsFSHdhIQ38P//888jKyjrr6f63334bRqMRjz76qGABI+mmL2/CXtNe1jFIFFHzcrz1XW+oNu8J6eMP3/oyjjf27Ge5zIKjqN21BBBoD5HMzF4YXDYJyR2p4O3RsbYgz/FwpARhTvKgXeFAm69znMfpis0xXTGNHTv2rElWPbF06VLY7XZUVFSgqakJzzzzDBoaGrB7927o9XrhgnYhpJIpLi7GggULMGrUqNNe37hxI26++eaY3Z75N8t/gx8aenZfnEgXxwNvre8H3ertF37nLjTf9D/Y25LW44/LyG9A/Z5F4AW8zSSTyTGg7+UoNQyEvIVHNG4G69IHYU3xoV3t6Hyex2aCpePsjeHiydVXX43BgwcLdjyLxYKioiK8+OKLuPvuuwU7bldCul3W3NyMnJycs17PyMhAU1NT2KFYydfns45AosiruwZBt3pzWMfQ2JoB9LxkjPV5yOtzK5oOfoSA7+xlZkIRDAawfffX2I6vkZZWgKEVVyHFkQ6+IzqubgBAa5NBazvxPE8qgF7waYKwpPphTnDBhA4Yne1os7THzTiPwWAQ9HjJyckoLy/HoUM9v/0bipBKpqCgAGvXrkWvXr1Oe33t2rXIzc0VJBgL+ToqGdLp+UODkfmf7k0rPh912zEgoSqkj21rzERW7xkwHvkQPo877CynMpnqsGzd6+A4Gfr3vQxlyYMhb+aAKNyBUemWIaNRhQyoACQBKIBfwcOW5odF54FJZoPR3fk8j0+gQo4mQpeM3W7H4cOH8bOf/UzQ43YlpJL5xS9+gQceeAA+n+/kdsvfffcd/vCHP+Chhx4SNGAkFegLWEcgUeCxhkEoXRR+wQCAsm4/UDE55I9vb05FWvEMmOs/gkeE9cd4Poide77FTnyL5OQcDO0zGemubPDW6P5mrfBzSGlRIqVFiV7QAcgBz/GwpwQ79+dR2mH0du7PE+vjPElJ4T3D9/DDD2Pq1KkoKipCY2MjnnrqKcjlctxyyy0CJTy/kErmkUcegclkwm9+85uTM0Q0Gg0effRRPP7444IGjCS6XUZ+2VaNwfO7Xo+spxRNR6DoJ4PfG/qtHUtrEpJyZsDW+hFcHRbBsp11HksTlq9/E+A4VFdeivLU4VC2yIBA9F3dnAvHc9C3y6FvT0ABEgBkAiiDyxCAJcWHdpUDpkAHWuwmWGNknEetVkOtDm/x3vr6etxyyy0wmUzIyMjA6NGjsWHDhogtaBzSwP8Jdrsd+/btg1arRVlZWdh/Gay5/C4Mf3846xiEkekdFZj+xkFA4Fsu2294A+ZzLN/fU4nJLnisi2BvbxMgVfckGTIxtO9kZHjzwJuj++qmJ7yan57n0brQdmKcx2xCGN8ORZGRkYGZM2eyjhGWsEpGisYtHIc2V+S+iEl0uMxVjF/PaQLvEH6plJpbX0NdozDbe2v1HgTdi2FtbRTkeD3Rp/wSVGaMgKpVDvil923jxDiPWeeGSWaH0d0Oo8XEdJynoqIiYre1xBK5tQViRIG+gEomzgz15OLX89pEKRgASAxaASQLciyXTQ11wnVIyf0C5sbjghyzu/Yd/AH7Dv4AvS4NQ6smI8tfCL5dOlc3p47zlEAPIAdBGQ9HSgBmgwftSgeMP20M53J38wnbMGVmZkbkPGKikjlDvi4f21tDfy6CxJYyfxoe/cDT7fXIQqFxGCFUyQCAx6mCSnMN0guXoq22RrDjdpfNbsLKjZ3bR5f3HoG+2Reftn20lMiCHPQmBfQmBQqRiM5xnnK4DEFYkr0wqR0wBaxosZnQYesQ/PznWog41lDJnKHQEJmlFgh72QEdZn2iBt9UK+p51KZjgKpM0GN63QoEAlchq/Q7tBzeLeixe+LgoQ04eGgDEhKSMKx6CrL5XoAA40/RTtshg7ZDgxxo0PkcVAm82iCsaT60a10w8R1odbTDZGkPa5yHrmQkqDK1knUEEgFJvAYvfZUJHDko+rnUDQeBXpcLftyAT44O6wTklKvRdFC4GXGhcDqtWL3pfQBAaa+hqM4bA61RDT6MWXWxRuWSIaNejQyo0XnlWoiAkoc1zQ+Lzg0T99PzPOY2+P0XfgBWLpcjLa3nD/JGGyqZM1SlhfbgHIkdKl6O11YUQ7Y7MlcA8vqDkPXmEBRhKjAfkMHcNgZ5fdRo2LdO8OOH4vDRLTh8dAs0Gh2GVk9Bnqy029tHS43cxyG1WYlUnBjnyUVQxsOeGoRF74bpxLptFiPc7tMfuE1LS4NcLmcTXEBUMmfISMhAhjYDRlfs7e5JLozjgX9trIJ607bInTPgh96ggFWsKcA8h7bmi1BQrUbd7pXinCMEbrcda7Z8CAAoLhyA/oXjkGBKCGn7aCmRBTkY2uQwtCWeNs7jTOoc52lXOdAWsCItJ511VEFQyZxD37S+WF2/mnUMIoJXdg+CYWV465GFQqf1wWoW7/gcOBgbBv20VcDX4p0oRMdqd+JY7U6oVAkYWn0VCkTaPjqWJVhlSLBqkPvTOE9SZa8LfkwskLEOEI36pvVlHYGIYNbhwcj6MvIFAwCJQeGXhDmX1rq+KBxwTUTOFQqv14l12z7GRxtnYZ33SzhyXeC0sX9LSAyqfPGX4Y8EupI5ByoZ6XmkcSDKFgqzHlkotO42ALqInKu1thSF/W9A3a5PwfPRO/Be17AHdQ17oFRqMLj6ShSp+4iyfXRM4gBlXmQ+X8RGVzLnQCUjLfeYqjFsPttnn9RmcadJn6m1rhD51TdDJo/+nyN9Pjc2bl+MhRueww+uxbDlOsAlRH9uMSkyEyBTS+MKj0rmHDITMpGulcagW7y7zlaOie/sBQJsB5tVDeJPlT6TsT4bORW3QqFSRfzcoWpsOoiv1r6GRfv/hiOGvQhmywBhVuSJKVK5VQZQyXSJpjLHvnGuYtzyznHwUbCXvLJ2HzgG3yxNTenIKLkNKm34+8RHUiDgxeadX2DR+uexyv4xOnI6wOni5+pGlS+NW2UAlUyXhmUPYx2BhGGQNwe/edcE3i7OemQ9xXndSDSw+SZpbklGSv5t0OiE3fwqUlpaD2PputlYuOevqNHvQiBHJvnvXHQlEwdG5IxgHYGEqNSfij9+4APfLuKc4RDotewG4a1tOugyb0ViciqzDOEKBgPY9uNX+Hjd8/jO+gEsORZweuld3XAahWQG/QEqmS6Vp5QjVRO7X5DxKjOYiOc/1YJvbGYd5SyJHNurKrs5Aeqkm2FIj/1FF9vaarFs3ev4aNfz2J+wHYFcADJpDN5oSpPASeTPAlDJdInjOFyUfRHrGKQH9EE1Xv4qGzgc2SXwu0vrMbGOAGeHBjLNdCRnS2Or8c7to7/Bx2tfwLft76I9ux1ckpJ1rLCoy1NYRxAUlcx5jMilW2axQsXL8a/VJZDvOsA6Spc01nrWEQAAbocKAdk0pBWUso4iqHZzI75dPwcf7pyFvZrN8OcCkMfeFYGmjEombozMGck6AukGjgf+tbkK6g27WEc5L1XTYdYRTvK5lPB4piCzVx/WUYTH89i1bwU+WfsCvjbORVu2EVxybFzdKNI0UKRqWMcQFJXMeeToclCop/1lot1LewfD8F3kFrwMlfI4u31fzsXvk8Nun4jssoGso4jGam3Bd+vfxofbn8Uu1Xr4coOAInqvbtQCXMU0NDTgtttuQ1paGrRaLfr164ctW7YIkC400puaIbAROSNQa4vs09qk+/5ydBByPme3XExPyBwdSNAr4LRFz8KQQb8MVtM45FWq0bB/I+s4otp74HvsPfA99Pp0DO07GVn+gqjbPloT5niM2WzGxRdfjHHjxmHp0qXIyMhATU0NUlLY3YKjkrmAkbkjsfDgQtYxyDk81DQQFR+yWfAyVPoEHk4b6xSn43kOppZRKKhSo27P96zjiM5ma8PKjfMAAOW9R6Jv1iiojSqA8fbRnFIGTVlyWMd44YUXUFBQgLlz5558rVcvtqs50+2yCxiVOwpquZp1DHKGO9urcNF7bNcjC0Wi3MU6Qhc4GBuHorCf8Dt4RrODh9Zjydq/48uGf6M5owFcGruxG3XvZHDK8NYr+/zzzzF06FBMnz4dmZmZGDRoEObMmSNQwtBQyVxAgjIBo3JHsY5BTnGNvQxXvbOf+XpkodB621lHOK/W+n4o7D+FdYyIczjMWL1pPj7c8iy2YgXceT5wqsh+e9T2DX+r5SNHjmD27NkoKyvDsmXLcO+99+L+++/HvHnzBEgYGo7neVpY+wI+P/w5nljzBOsYBMBYVxFmvtUC3haZ/VmE1nHF3djiHcw6xgVlFhxH7a5PgTj+9qDRGjCsejJyuRLxt4/mgJwnLoJcF95ipiqVCkOHDsW6df/divv+++/H5s2bsX79+nBThoSuZLphbMFYKGQ0fMXaQG82Zr5njtmCAQBV6xHWEbqlta4IBdU3QSaBPeZD5XZ14IfNH+CjTbOwKbgMrjwPOJGW31cVGsIuGADIyclB376nb1XSp08f1Naym7wk+ZL561//Co7j8MADD4R8DIPKQGuZMVbiT8ETHwbAm6L7dtOFKI/vYR2h24z1ucipvBVyZWw8YyKmo8d34PM1L2HxsZdRn3oUyBT2h05tX2GWsLr44otx4MDpDyQfPHgQRUVFghw/FJIumc2bN+P1119H//79wz7WVb2uEiARCUVmQIe/LkkE39DEOkrY5OZWqGNou2FTYwYye98GpUZaDwiGyuN2YO3Whfho4yys9/0Hjlx3+NtHc4C2X4Yg+X7/+99jw4YNeO6553Do0CEsWLAAb7zxBmbOnCnI8UMh2ZKx2+2YMWMG5syZI8gc8fGF42mWGQM6XoWXl2UBNcdYRxGMXh+9DwOei7k5BWlFt0GdKJ2VgYVQW78bX659GZ/UvIjjyTXgs0IrG3WvJMGe8h82bBgWL16MDz74ANXV1fjLX/6Cl156CTNmzBDk+KGQbMnMnDkTkydPxoQJEwQ5XqIyEWPyxwhyLNI9Cl6Gf63uDfnO6F2PLBQ6hZt1hB6ztBqQlHMrEgzJrKNEHZ/PjQ3bP8XCDc9hjecz2HMd4BK6XzgJQ4RdFXvKlCnYtWsX3G439u3bh1/84heCHr+nJDma/eGHH2Lbtm3YvFnYB/Wu6nUVvj3+raDHJF3715Z+0KzfyjqG4BL8FgCxt713h0mHxNRbIFN8DHu7kXWcqNTQuB8Njfshl6swpHoSihKqIWsJAF1M0uPUcmj7xd7nQk9I7kqmrq4Ov/vd7/D+++9DI/B95EsLLkW6VtqfENHiH3sHI3m59AoGADS26NvrprscVi2UuhuRlJXLOkpUCwS82LTzcyxa/xxWOz+BLdd+zu2jtf3SIVPFzhhdKCT3nMySJUtw7bXXQn7K1MtAIACO4yCTyeDxeE57W0+9su0VzNnF9glaqXvm2GD0+SA21iMLhWvoJKzXTWUdIywqrQ8K7ku0NxxlHSVmyOUKDKyaiBJdf8iagwAPZPy6P9TFSayjiUpyJWOz2XD8+OmbVt15552orKzEo48+iurq6rCO32hvxJWfXokgz3adI6l6oHkARr2zTdIPAfqzivB9nz+wjhE2pToAjXopjMcPso4SczLSi3HR4GtQcbf0l/GR3JiMXq8/q0gSExORlpYWdsEAQK4uF6PzRuP7eukvJBhpt5urMOq9nZIuGABQtByHcqAMPk9s/6Di88gRDFyJrFI1Wg5H914+0cbYdgy2zChbKVUkkhuTiYQby29kHUFyrraXYeo7BwB/9CyDLya9XhpfegG/HB3Wy5BbMZR1lJiiUKlRNU76VzGABK9kzmXVqlWCHu+S/EuQm5iLRkejoMeNV5e4C/Gzd+rBu2Nvam+odCov2iXyMx4fkKHdeAny+6pRv3ct6zgxoWLUJdDq9KxjRIQ0PssjTMbJcH359axjSEI/byZ+954VvC0+bh2ckBCwso4gLJ6DsWk4CqrHs04SEwZNjJ+VrqlkQnRd2XW0aGaYivzJeHIhEGwzsY4ScVpHK+sIguPAwdgwEIX9r2QdJapll5Yhq6Q36xgRQyUTonRtOq4ouoJ1jJiVHkzE3z7Tg6+Lz1uOatPxC79TjGqt64PC/tMALraWz4mUAVdMZh0hoqhkwnBPv3vAgb6QeiohqMQry3KBg/H7jIWyYT/rCKJqrStBQb/p4GT0LeZUurR0VF58KesYEUWfAWEoSynDuIJxrGPEFAUvw+w15VDs2Mc6ClOK+kOQK6T9A4qxLh/5fW+BXEG3lU+4aNqNUMTZ1glUMmH65YBfso4QU/65rR+0a3eyjsEcFwxAZ5D2ciIAYGzIQnb5DChUtIK5ISMT/cbHx7TlU1HJhKkqrQoX517MOkZM+Pu+wUj5RprrkYVCr4mPZ4JMTWnI6HUbVNoE1lGYuujamyBXxNdVDEAlI4hfDfgV6whR78njg1CwRLrrkYUiIRg/07bNrUlIzp8Brd7AOgoTSVnZqB4rzLYjsYZKRgCDMgdhaBY98dyV37YOQPUHW1jHiDpal/SmMZ9PR5seiekzkJiSxjpKxI28/hbIwliYN5ZRyQjkl/1pbOZcbrP0xSXzpL8eWSg07XWsI0Sc3aKFWn8zDBk5rKNETEpOHvpcMpZ1DGaoZAQyMnck+mf0Zx0jqky298Y17xyMm/XIekrZGJ+rFzttanDqG5CSU8g6SkSMvP5myGTxeRUDUMkI6sEhD7KOEDUudhfg5/MawbviZz2ynlLU7QcXp1+BHocSAUxDeoG0n3xPyy+Mu+dizhSnn+LiGJI1BJcXxd8UxTNVeTPxwHwb+I4O1lGimszrgc4Qv8+QeN0KuDyTkVnSl3UU0Yy84Za4fyA1vv/0Ivj9kN9DKYu/aYonFAaS8fQiDryxjXWUmKDTBlhHYCrgk8PecQVyygaxjiK49MJilI8YzToGc1QyAivQF2BGnxmsYzCRFkzA3z4zgK9tYB0lZug4B+sIzAUDMlhMY5HXZwTrKIIaNf1WcLR+G5WMGH7Z/5dIUaewjhFRCUElXv0mD9yBI6yjxBSti674AIDnObQ1j0RBlTTGL7JLy1A2fBTrGFGBSkYEepUevxn4G9YxIkYODv9aWw7F9vhejywUaitd9Z3AgYOxcQgK+sX26uYcJ8Nld8fP1/+FUMmIZHr5dJQmlbKOERGvbRuAhDW0Hlko1E01rCNEHWN9NQr7T2UdI2QDrrgS2aVlrGNEDSoZkchlcjw09CHWMUT3twODkbaMnuYPleLYHtBuEWdrrStDYf/rwcXYHO/E5BSMvvl21jGiSmz9C8aYS/IvkfSU5j/VDULRp7QeWThkLjsS9fE7jfl8WuuKkF99U0wtx3Lpz+6GOiGRdYyoQiUjsj9e9EckqZNYxxDczNb+6P8+XcEIQZcQZB0hahnrc5BbeSvkShXrKBdUWD0AfUaPZR0j6lDJiCxdm44/DPsD6xiCutXaB5fO+5HWIxOITuZiHSGqtTVmIKv3DCg1WtZRuqRQqnDZ3feyjhGVqGQi4OrSqzE6TxoPZV3pKMW1c2toPTIBab3trCNEvfbmFKQWzoBGp2cd5ZxG3HALUnPzWceISlQyEfLkiCeRqIzte7Uj3fm4a14TrUcmMA1NY+4Wq9EAfdatSEiKrmfQskrKMOzq61jHiFpUMhGSo8vBA4MfYB0jZH19GXhwgQO8ldYjE5q65TDrCDHD1p4IbcrN0Kdlso4CAJArFJh07+/CWmX5+++/x9SpU5GbmwuO47BkyRLhAkYBKpkIuqniJgzOHMw6Ro/l+5PwzCI5+BYj6yiSpDy+l3WEmOKwaqHQTkdyFvvbU8On3Yj0wuKwjuFwODBgwAD885//FCZUlOF4nkZvI+mY9Rhu/PJGuPyxMdibEtTi359ngttHP22Lad1V/4bbGd+LZfaUSuuDgvsS7Q1HmZw/o7AYM55/CXKFcFPQOY7D4sWLMW3aNMGOyRpdyURYcVIxHhv+GOsY3aLhFXhteQEVTAToo3M8O6p5XUr4/FORUVwR8XMrVGpMmvmgoAUjVVQyDFxXdh0ml0xmHeO85OAwe10llFvpVk4kJMppMkUofF4FnI5JyO4d2V1pL7v7XmQWl0T0nLGKSoaRJ0c8iWJDMesYXXp1+wAkfr+DdYy4keCzsI4QswJ+Oazm8citHBaR8/W7bCKqx06IyLmkgEqGkQRlAv7v0v+DWq5mHeUsLxwcjPSv6Wn+SNLYmlhHiGl8UIb2ltHI7yvu82hZJWUYf+evRT2H1FDJMFSRWoGHhz7MOsZp/lg3CL0+ofXIIk3TSvvwhI9DW9NwFPS7TJSja/QGXP3g41Ao43fn21BQyTB2c+XNuKIoOvbPuNfYHwMXbGUdIy4p62gvHqEY6wegsP9Vgh6T42SYfN9DMGQI/3yO3W7Hjh07sGPHDgDA0aNHsWPHDtTW1gp+LhZoCnMUsHltuPGLG1Fvr2eW4SZrJa6fcwDw+ZhliHdrJv0bXjdNYxZKZuFR1P64RJA19kbecCtGTb81/FDnsGrVKowbN+6s1++44w688847opwzkqhkosT+9v24fentTJ6fmegswT1z6sE7nRE/N/mvndNfh8lIa8IJKaOgAfW7F4EPhr7Sda+BQ3DtY0+D42jjn1DQ7bIoUZlaiRcueQGyCG/SNNyTh3vebaWCiQI6pYd1BMkx1uUhr++tkIc4jmLIyMKVv32YCiYMVDJRZFzhODw45MGIna/Cl45H3neBN1sidk7StYQArQsnhraGzM6tAtSaHn2cXKnE1Q8+Dm2UrvwcK6hkoswdVXfg+rLrRT9PTkCPZz9Wgm9pFf1cpHs0jmbWESSrvTkVacUzerRr5fg7f42skt4ipooPVDJR6IkRT+Ci7ItEO35SUIN/fJkG/lidaOcgPac2HmcdQdIsrUlIyp0Brf7CO9UOnDgZ/S+bGIFU0kclE4WUMiVeHPeiKCsCqHk5/rmiCLK9hwQ/NgmPqp6mMYutw6RDYsat0KWmd/k+5SNGY/zPfxXBVNJGJROlDCoD/nnZP5GsThbsmBwPzF7fF6rNewQ7JhGOvPEw5Er6khSb3ayFUncjkjJzznpbYfUAXPXbh8DJ6N9BKPQ3GcUKDYV4Zfwr0CqE2dv81V2DoFu9XZBjEeFxPA+9gb4kI8Fl0wDK65GSW3TytayS3rjm4ScgV9AT/UKiz+goNyhzEF4Z/0rYa5w9f2gwMv+zWaBURCw6NT0nEykepwoB/hqkF5YhOTsH1z32NFTaBNaxJIdKJgaMyBmBF8e+CKUstJ+wHmsYhNJFtB5ZLEgM0jTmSPK6FZBprsUNf5qFhKRk1nEkiUomRozJH4P/HfO/kHM920v8l23VGDyf1iOLFRonTSmPJK1BhSkzhyBJhDXJSCcqmRgyoWgCnh39bLdXBZjeUYEJ7+wBwlhSg0SWpl0aiyLGAk2iEtf8biBSsrv/7AzpOSqZGDOlZAqeGvkUOJx/mYsJzl64ce5RWvAyxqgaDrKOEBfUCQpc/buBSMvTsY4ieVQyMei6suvw2PDHunz7UE8ufvWukdYji0GK2n2QyWmdLDEpNXJM+e0AZBTScjGRQCUTo27tcyueuOiJs65oyvxpePQDD61HFqO4gB86g4J1DMnS6pWY9vtByO514af+iTCoZGLYzZU347lLnoOC6/ymlB3QYdYnavBNLYyTkXDoNDSNWQyGDC2u/8MQZBYZWEeJK/QjU4ybUjIFOqUO/7PyCbz0nzTgSA3rSCRMibADoMFoIWUU6jHlvgFIMKhYR4k7dCUjAWMLxuKTga9AUUur+EqB1t3GOoKkFPRJwbQHB1HBMEIlIxEp/YegaP57UGTSfP9YpzHT6thCKR+ehcn3DYBKQzdtWKGSkRBNRQWKP1gAVUkJ6ygkDKomWiFbCAMnFGDCnX0hl9O3OZbob19ilHl5KP5gARJHjWIdhYRIeWw3aLffMHDAxTf0xsU3lNG2yVGASkaC5ElJKJjzBlLvuJ11FBICzuNCgp5u74RCpuBw+V19MXBCIeso5CdUMhLFyeXIevxx5MyaBU5JS5fHGn0CLQXUU1qDClf/diDKh2WzjkJOQSUjccnXX4fCd+dBntH1ToAk+iRytFpDT+SVJ+OmJ4YhryKFdRRyBiqZOJAwaBB6LVoETVUV6yikmxK8JtYRYgMHDLmyCFc/MAiJSeHtuUTEQSUTJ5TZ2Sh6fz6Sb7qJdRTSDRprA+sIUU+jU2LqfQMw4ppSyGQ0wB+tOJ7nedYhSGR1fL0MTU8+iWAHbZAVrTzVo7E2/RbWMaJWTmkSrrinCroUDeso5ALoSiYOGSZNRMniT6EdNIh1FNIF5bHdrCNEJw4YdEUhpj04iAomRlDJxCllXh6K3nsXab/6FSCjT4NoI7NboE2kacynUicqMPne/hh1XW/I6AHLmEH/UnGMUyiQ+fsHUPj2W1BkZLCOQ86g19Gd7BOyehlw0xPDUdyfZknGGioZgsQRI1DyxedImjaNdRRyikS5i3UE5hRqOS6+oTeue2QI9Kl0eywW0cA/OY39hzVofuop+BobWUeJey3Tn8QeYxbrGMwU90vDmFsqqFxiHF3JkNPoLhmNki8+R8qMGaAFtNjSdDSxjsBEgkGFib+oxuSZA6hgJICuZEiXnFu3oulPf4b36FHWUeKSe9AErEu6lnWMyOGAqkvyMPLaUqi1NOlBKqhkyHkFvV6YXn8DprfeAu92s44TVwJpOVjd70+sY0REam4ixt5agZzeyayjEIFRyZBu8TU2ovX//o6Or75iHSWurLny3/C6AqxjiEaulGHolcUYNLGQ9n2RKCoZ0iPObdvQ8tzzcO+mhwUjYef012Ey+lnHEEVhVRouubEMyVkJrKMQEVHJkB7jeR7WxUtg/Mc/4DcaWceRtMO3voLjjXLWMQSV1cuAkdeWIq+cVkyOB1QyJGRBhwOmt95G+7vvImi3s44jSU03/Q/2taSxjiGI5KwEjJhWgtJBmayjkAiikiFhC1itML3zDszvvoegw8E6jqRYrvoNtjlje4sGXaoaw67qhcpRObRachyikiGCCVgsMM19B+b33kPQSZtuCcE1/CqsT5jMOkZI9KkaDLmyCJWjcmhQP45RyRDB+c1mtL89F+b336eyCZM/pwTfVzzEOkaPULmQU1HJENEELBaYFy6CecEC+JubWceJWd9fMRt+b5B1jAvKLNKj+tJ8lF+UReVCTqKSIaLj/X7YvvkG7fPehWvnTtZxYs7261+H2RSd05jlShnKhmai+tJ8ZBUbWMchUYhKhkSUa+dOtM97Fx3ffAP4o/MbZ7SpufU11DVG14C5IUOL6jF56DMqB5pEJes4JIpRyRAmfC0tsHzyCaxLPoOvtpZ1nKjWePNz2N+cxDoGOA4o6peO6kvzUNg3FRwtoEq6gUqGMOfcuhXWJUvQsfRret7mHNqnPoAdtjJm59fqlehzcS6qLsmFIU3LLAeJTVQyJGoE3W7Yvl0O65IlcKxfDwSjf7A7EpwXX4sNygkRPadWr0Rx/3SUDMxAQZ9UyBXiDuQHAgE8/fTTmD9/Ppqbm5Gbm4uf//zn+NOf/kRXTDGO1tMmUUOm0SBp6hQkTZ0CX0srbN9+C9u338K5ZQsQkO4ikReirD8A9BK/ZHSpapQMyEDJoAzk9E6O6IOTL7zwAmbPno158+ahqqoKW7ZswZ133omkpCTcf//9EctBhEdXMiTq+c1m2FeshG3lCjjWrQcfZ8/e8HIFVo99BcGA8F+qKdkJKBnYWSyZRexmh02ZMgVZWVl46623Tr52/fXXQ6vVYv78+cxykfDRlQyJeoqUFCRffx2Sr78OQa8Xzg0bYF+1Go5NG+E9dJh1PNFxAT/0SQpY233hH4sDMgr1KBmUgZKBGUjJThQgYfhGjRqFN954AwcPHkR5eTl27tyJNWvW4MUXX2QdjYSJSobEFJlKBd2YMdCNGQMA8JtMcG7eDMfGjXBu2gzvYWmWjk7tgzWEj1Nq5MgqNiC7NAk5JUnIKkmKyl0nH3vsMXR0dKCyshJyuRyBQACzZs3CjBkzWEcjYYq+zzZCekCRlgbDpEkwTJoEAPC3tcG5aROcW7fBvXcv3AcOSOL2WiLsAHQXfD9DuuZkoWSXJiEtVwcuBhalXLhwId5//30sWLAAVVVV2LFjBx544AHk5ubijjvuYB2PhIHGZIik8cEgvMeOwb1nb2fp7NsH9759CFpDuS5gp23aI/jRUnzaa4lJKiRnJyKjQIfs0iRklyQhMUnNJmCYCgoK8Nhjj2HmzJknX3v22Wcxf/587N+/n2EyEi66kiGSxslkUJeUQF1SgqSpU06+7mtuhre2Fr7aWnhr6+Ctq4Wvtg7eujoEOzoYJj6dPDUVyvx85OQqoBpVjJTsBCRndf5SaaTz5et0OiGTnT5NWi6XI0jT2GOedD5LCekBZXY2lNnZwPDhZ73NbzbD19iIQLsZAXM7/O3tp/y/GQGzGQGrFbzHA97rPfkr6PMBvrMH5zmV6qxfMrUa8uRkyFNTIU9NgSI17af/pkKemgZFagqUubmQJf53YL63qH8jbE2dOhWzZs1CYWEhqqqqsH37drz44ou46667WEcjYaLbZYQIiOf5ztLx+cGplJCpVKwjxQSbzYY///nPWLx4MVpbW5Gbm4tbbrkFTz75JFT0dxjTqGQIIYSIhjZ9IEzMnj0b/fv3h8FggMFgwMiRI7F06VLWsQghAqMrGcLEF198AblcjrKyMvA8j3nz5uFvf/sbtm/fjqqq2N7TnhDyX1QyJGqkpqbib3/7G+6++27WUQghAqHZZYS5QCCARYsWweFwYOTIkazjEEIERCVDmNm1axdGjhwJt9sNnU6HxYsXo2/fvqxjEUIERLfLCDNerxe1tbWwWq34+OOP8eabb2L16tVUNIRICJUMiRoTJkxAaWkpXn/9ddZRCCECoSnMJGoEg0F4PB7WMQghAqIxGcLE448/jiuvvBKFhYWw2WxYsGABVq1ahWXLlrGORggREJUMYaK1tRW33347mpqakJSUhP79+2PZsmW4/PLLWUcjhAiIxmQIIYSIhsZkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQohoqGQIIYSIhkqGEEKIaKhkCCGEiIZKhhBCiGioZAghhIiGSoYQQoho/h/t5HdmlGe+VQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dane['Passive Smoker'].value_counts().plot(kind = 'pie')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "6385071c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Smoking Gender\n",
"1 1 102\n",
" 2 79\n",
"2 1 102\n",
" 2 120\n",
"3 1 79\n",
" 2 93\n",
"4 1 49\n",
" 2 10\n",
"5 1 10\n",
"6 1 28\n",
" 2 32\n",
"7 1 167\n",
" 2 40\n",
"8 1 61\n",
" 2 28\n",
"dtype: int64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane.groupby(['Smoking','Gender']).size()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "af3dd196",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Smoking,Gender'>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHICAYAAABkoRGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA18klEQVR4nO3df3zO9eL/8ec1Y5uxzYbNTputQ0xUEhoqP1bzo0LK4SDHEX1Oo9ARO4VDOeQ4JR3spPKjD+l0ThQOjvyasoaJ/Doik8XZiLaZ2mXZ6/vHvq5PV0aN67LX5nG/3d63ut7v9/V+P6/X9XZ5el/v67ocxhgjAAAAi/iUdwAAAIAfo6AAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKzjW94BrkRxcbGOHz+umjVryuFwlHccAADwMxhjdObMGUVGRsrH5/LnSCpkQTl+/LiioqLKOwYAALgCWVlZuuGGGy67ToUsKDVr1pRU8gCDgoLKOQ0AAPg58vPzFRUV5fp7/HIqZEG58LZOUFAQBQUAgArm51yewUWyAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANbxLe8AAIDrW8zYlVe9jSNTu3kgCWzCGRQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsE6ZC0pqaqoeeOABRUZGyuFwaNmyZRets3//fj344IMKDg5WYGCgWrZsqaNHj7qWFxYWKikpSWFhYapRo4Z69eqlnJycq3ogAACg8ihzQTl79qxuvfVWzZo1q9TlX3zxhdq1a6fGjRtr48aN+uyzzzRu3Dj5+/u71hk5cqSWL1+ud999V5s2bdLx48f10EMPXfmjAAAAlUqZfyywS5cu6tKlyyWXP/vss+rataumTZvmmvfLX/7S9f95eXl64403tHjxYnXs2FGSNG/ePMXFxemTTz7RnXfeWdZIAACgkvHoNSjFxcVauXKlbrrpJiUmJqpu3bpq3bq129tAGRkZKioqUkJCgmte48aNFR0drbS0tFK363Q6lZ+f7zYBAIDKy6MF5cSJEyooKNDUqVPVuXNn/fvf/1bPnj310EMPadOmTZKk7OxsVatWTSEhIW73DQ8PV3Z2dqnbnTJlioKDg11TVFSUJ2MDAADLePwMiiR1795dI0eO1G233aaxY8fq/vvvV0pKyhVvNzk5WXl5ea4pKyvLU5EBAICFynwNyuXUrl1bvr6+atKkidv8uLg4ffTRR5KkiIgInTt3Trm5uW5nUXJychQREVHqdv38/OTn5+fJqAAAwGIePYNSrVo1tWzZUgcOHHCb//nnn6t+/fqSpBYtWqhq1apat26da/mBAwd09OhRxcfHezIOAACooMp8BqWgoECHDh1y3c7MzNTOnTsVGhqq6OhojR49Wr/61a909913q0OHDlq9erWWL1+ujRs3SpKCg4M1ePBgjRo1SqGhoQoKCtLw4cMVHx/PJ3gAAICkKygo27dvV4cOHVy3R40aJUkaOHCg5s+fr549eyolJUVTpkzRk08+qUaNGumf//yn2rVr57rPyy+/LB8fH/Xq1UtOp1OJiYmaPXu2Bx4OAACoDBzGGFPeIcoqPz9fwcHBysvLU1BQUHnHAQBchZixK696G0emdvNAEnhbWf7+5rd4AACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWKXNBSU1N1QMPPKDIyEg5HA4tW7bskuv+z//8jxwOh2bMmOE2//Tp0+rXr5+CgoIUEhKiwYMHq6CgoKxRAABAJVXmgnL27FndeuutmjVr1mXXW7p0qT755BNFRkZetKxfv37au3ev1q5dqxUrVig1NVVDhw4taxQAAFBJ+Zb1Dl26dFGXLl0uu86xY8c0fPhwrVmzRt26dXNbtn//fq1evVrbtm3THXfcIUl69dVX1bVrV02fPr3UQgMAAK4vHr8Gpbi4WAMGDNDo0aN18803X7Q8LS1NISEhrnIiSQkJCfLx8VF6enqp23Q6ncrPz3ebAABA5eXxgvLiiy/K19dXTz75ZKnLs7OzVbduXbd5vr6+Cg0NVXZ2dqn3mTJlioKDg11TVFSUp2MDAACLeLSgZGRk6JVXXtH8+fPlcDg8tt3k5GTl5eW5pqysLI9tGwAA2MejBWXz5s06ceKEoqOj5evrK19fX3355Zd6+umnFRMTI0mKiIjQiRMn3O73/fff6/Tp04qIiCh1u35+fgoKCnKbAABA5VXmi2QvZ8CAAUpISHCbl5iYqAEDBmjQoEGSpPj4eOXm5iojI0MtWrSQJK1fv17FxcVq3bq1J+MAAIAKqswFpaCgQIcOHXLdzszM1M6dOxUaGqro6GiFhYW5rV+1alVFRESoUaNGkqS4uDh17txZQ4YMUUpKioqKijRs2DD16dOHT/AAAABJV/AWz/bt29W8eXM1b95ckjRq1Cg1b95c48eP/9nbWLRokRo3bqxOnTqpa9euateunV577bWyRgEAAJVUmc+gtG/fXsaYn73+kSNHLpoXGhqqxYsXl3XXAADgOsFv8QAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArFPmgpKamqoHHnhAkZGRcjgcWrZsmWtZUVGRxowZo2bNmikwMFCRkZF69NFHdfz4cbdtnD59Wv369VNQUJBCQkI0ePBgFRQUXPWDAQAAlUOZC8rZs2d16623atasWRct+/bbb7Vjxw6NGzdOO3bs0HvvvacDBw7owQcfdFuvX79+2rt3r9auXasVK1YoNTVVQ4cOvfJHAQAAKhWHMcZc8Z0dDi1dulQ9evS45Drbtm1Tq1at9OWXXyo6Olr79+9XkyZNtG3bNt1xxx2SpNWrV6tr16766quvFBkZ+ZP7zc/PV3BwsPLy8hQUFHSl8QEAFogZu/Kqt3FkajcPJIG3leXvb69fg5KXlyeHw6GQkBBJUlpamkJCQlzlRJISEhLk4+Oj9PT0UrfhdDqVn5/vNgEAgMrL15sbLyws1JgxY9S3b19XU8rOzlbdunXdQ/j6KjQ0VNnZ2aVuZ8qUKZo4caI3o8LLrvZfSPzrCACuL147g1JUVKTevXvLGKM5c+Zc1baSk5OVl5fnmrKysjyUEgAA2MgrZ1AulJMvv/xS69evd3ufKSIiQidOnHBb//vvv9fp06cVERFR6vb8/Pzk5+fnjagAAMBCHj+DcqGcHDx4UB9++KHCwsLclsfHxys3N1cZGRmueevXr1dxcbFat27t6TgAAKACKvMZlIKCAh06dMh1OzMzUzt37lRoaKjq1aunhx9+WDt27NCKFSt0/vx513UloaGhqlatmuLi4tS5c2cNGTJEKSkpKioq0rBhw9SnT5+f9QkeAABQ+ZW5oGzfvl0dOnRw3R41apQkaeDAgfrjH/+oDz74QJJ02223ud1vw4YNat++vSRp0aJFGjZsmDp16iQfHx/16tVLM2fOvMKHAAAAKpsyF5T27dvrcl+d8nO+ViU0NFSLFy8u664BAMB1gt/iAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYx7esd0hNTdWf//xnZWRk6L///a+WLl2qHj16uJYbYzRhwgTNnTtXubm5atu2rebMmaOGDRu61jl9+rSGDx+u5cuXy8fHR7169dIrr7yiGjVqeORBSVLM2JVXvY0jU7t5IEn5u9qxqCzjAACoOMp8BuXs2bO69dZbNWvWrFKXT5s2TTNnzlRKSorS09MVGBioxMREFRYWutbp16+f9u7dq7Vr12rFihVKTU3V0KFDr/xRAACASqXMZ1C6dOmiLl26lLrMGKMZM2boueeeU/fu3SVJCxcuVHh4uJYtW6Y+ffpo//79Wr16tbZt26Y77rhDkvTqq6+qa9eumj59uiIjI6/i4QAAgMrAo9egZGZmKjs7WwkJCa55wcHBat26tdLS0iRJaWlpCgkJcZUTSUpISJCPj4/S09M9GQcAAFRQZT6DcjnZ2dmSpPDwcLf54eHhrmXZ2dmqW7euewhfX4WGhrrW+TGn0ymn0+m6nZ+f78nYAADAMhXiUzxTpkxRcHCwa4qKiirvSAAAwIs8WlAiIiIkSTk5OW7zc3JyXMsiIiJ04sQJt+Xff/+9Tp8+7Vrnx5KTk5WXl+easrKyPBkbAABYxqMFJTY2VhEREVq3bp1rXn5+vtLT0xUfHy9Jio+PV25urjIyMlzrrF+/XsXFxWrdunWp2/Xz81NQUJDbBAAAKq8yX4NSUFCgQ4cOuW5nZmZq586dCg0NVXR0tEaMGKEXXnhBDRs2VGxsrMaNG6fIyEjXd6XExcWpc+fOGjJkiFJSUlRUVKRhw4apT58+fIIHAABIuoKCsn37dnXo0MF1e9SoUZKkgQMHav78+XrmmWd09uxZDR06VLm5uWrXrp1Wr14tf39/130WLVqkYcOGqVOnTq4vaps5c6YHHg4AAKgMylxQ2rdvL2PMJZc7HA5NmjRJkyZNuuQ6oaGhWrx4cVl3DQAArhMV4lM8AADg+kJBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYp8xf1AbgysWMXXlV9z8ytZuHkgCA3TiDAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB2PF5Tz589r3Lhxio2NVUBAgH75y1/q+eeflzHGtY4xRuPHj1e9evUUEBCghIQEHTx40NNRAABABeXxgvLiiy9qzpw5+utf/6r9+/frxRdf1LRp0/Tqq6+61pk2bZpmzpyplJQUpaenKzAwUImJiSosLPR0HAAAUAH5enqDW7ZsUffu3dWtWzdJUkxMjN5++21t3bpVUsnZkxkzZui5555T9+7dJUkLFy5UeHi4li1bpj59+ng6EgAAqGA8fgalTZs2WrdunT7//HNJ0q5du/TRRx+pS5cukqTMzExlZ2crISHBdZ/g4GC1bt1aaWlpno4DAAAqII+fQRk7dqzy8/PVuHFjValSRefPn9fkyZPVr18/SVJ2drYkKTw83O1+4eHhrmU/5nQ65XQ6Xbfz8/M9HRsAAFjE42dQ/v73v2vRokVavHixduzYoQULFmj69OlasGDBFW9zypQpCg4Odk1RUVEeTAwAAGzj8YIyevRojR07Vn369FGzZs00YMAAjRw5UlOmTJEkRURESJJycnLc7peTk+Na9mPJycnKy8tzTVlZWZ6ODQAALOLxt3i+/fZb+fi4954qVaqouLhYkhQbG6uIiAitW7dOt912m6SSt2zS09P1u9/9rtRt+vn5yc/Pz9NRr4mYsSuv6v5HpnbzUBLwXABAxeHxgvLAAw9o8uTJio6O1s0336xPP/1UL730kn77299KkhwOh0aMGKEXXnhBDRs2VGxsrMaNG6fIyEj16NHD03EAAEAF5PGC8uqrr2rcuHF64okndOLECUVGRurxxx/X+PHjXes888wzOnv2rIYOHarc3Fy1a9dOq1evlr+/v6fjAACACsjjBaVmzZqaMWOGZsyYccl1HA6HJk2apEmTJnl69wAAoBLgt3gAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOt4paAcO3ZM/fv3V1hYmAICAtSsWTNt377dtdwYo/Hjx6tevXoKCAhQQkKCDh486I0oAACgAvJ4Qfnmm2/Utm1bVa1aVatWrdK+ffv0l7/8RbVq1XKtM23aNM2cOVMpKSlKT09XYGCgEhMTVVhY6Ok4AACgAvL19AZffPFFRUVFad68ea55sbGxrv83xmjGjBl67rnn1L17d0nSwoULFR4ermXLlqlPnz6ejgQAgPVixq686m0cmdrNA0ns4PEzKB988IHuuOMOPfLII6pbt66aN2+uuXPnupZnZmYqOztbCQkJrnnBwcFq3bq10tLSSt2m0+lUfn6+2wQAACovjxeUw4cPa86cOWrYsKHWrFmj3/3ud3ryySe1YMECSVJ2drYkKTw83O1+4eHhrmU/NmXKFAUHB7umqKgoT8cGAAAW8XhBKS4u1u23364//elPat68uYYOHaohQ4YoJSXlireZnJysvLw815SVleXBxAAAwDYeLyj16tVTkyZN3ObFxcXp6NGjkqSIiAhJUk5Ojts6OTk5rmU/5ufnp6CgILcJAABUXh4vKG3bttWBAwfc5n3++eeqX7++pJILZiMiIrRu3TrX8vz8fKWnpys+Pt7TcQAAQAXk8U/xjBw5Um3atNGf/vQn9e7dW1u3btVrr72m1157TZLkcDg0YsQIvfDCC2rYsKFiY2M1btw4RUZGqkePHp6OAwAAKiCPF5SWLVtq6dKlSk5O1qRJkxQbG6sZM2aoX79+rnWeeeYZnT17VkOHDlVubq7atWun1atXy9/f39NxAABABeTxgiJJ999/v+6///5LLnc4HJo0aZImTZrkjd0DAIAKjt/iAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKzjW94BAFxbMWNXXtX9j0zt5qEkAHBpnEEBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsI7XC8rUqVPlcDg0YsQI17zCwkIlJSUpLCxMNWrUUK9evZSTk+PtKAAAoILwakHZtm2b/va3v+mWW25xmz9y5EgtX75c7777rjZt2qTjx4/roYce8mYUAABQgXitoBQUFKhfv36aO3euatWq5Zqfl5enN954Qy+99JI6duyoFi1aaN68edqyZYs++eQTb8UBAAAViNcKSlJSkrp166aEhAS3+RkZGSoqKnKb37hxY0VHRystLa3UbTmdTuXn57tNAACg8vL1xkaXLFmiHTt2aNu2bRcty87OVrVq1RQSEuI2Pzw8XNnZ2aVub8qUKZo4caI3ogIAoJixK696G0emdvNAElzg8TMoWVlZeuqpp7Ro0SL5+/t7ZJvJycnKy8tzTVlZWR7ZLgAAsJPHC0pGRoZOnDih22+/Xb6+vvL19dWmTZs0c+ZM+fr6Kjw8XOfOnVNubq7b/XJychQREVHqNv38/BQUFOQ2AQCAysvjb/F06tRJu3fvdps3aNAgNW7cWGPGjFFUVJSqVq2qdevWqVevXpKkAwcO6OjRo4qPj/d0HAAAUAF5vKDUrFlTTZs2dZsXGBiosLAw1/zBgwdr1KhRCg0NVVBQkIYPH674+Hjdeeedno4DAAAqIK9cJPtTXn75Zfn4+KhXr15yOp1KTEzU7NmzyyMKAACw0DUpKBs3bnS77e/vr1mzZmnWrFnXYvcAAKCC4bd4AACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA65fJbPAAAO8SMXXnV2zgytZsHkgDuOIMCAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAO34MCAOWE7yCBbWw6JjmDAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1PF5QpkyZopYtW6pmzZqqW7euevTooQMHDritU1hYqKSkJIWFhalGjRrq1auXcnJyPB0FAABUUB4vKJs2bVJSUpI++eQTrV27VkVFRbrvvvt09uxZ1zojR47U8uXL9e6772rTpk06fvy4HnroIU9HAQAAFZSvpze4evVqt9vz589X3bp1lZGRobvvvlt5eXl64403tHjxYnXs2FGSNG/ePMXFxemTTz7RnXfe6elIAACggvH6NSh5eXmSpNDQUElSRkaGioqKlJCQ4FqncePGio6OVlpaWqnbcDqdys/Pd5sAAEDl5dWCUlxcrBEjRqht27Zq2rSpJCk7O1vVqlVTSEiI27rh4eHKzs4udTtTpkxRcHCwa4qKivJmbAAAUM68WlCSkpK0Z88eLVmy5Kq2k5ycrLy8PNeUlZXloYQAAMBGHr8G5YJhw4ZpxYoVSk1N1Q033OCaHxERoXPnzik3N9ftLEpOTo4iIiJK3Zafn5/8/Py8FRUAAFjG42dQjDEaNmyYli5dqvXr1ys2NtZteYsWLVS1alWtW7fONe/AgQM6evSo4uPjPR0HAABUQB4/g5KUlKTFixfr/fffV82aNV3XlQQHBysgIEDBwcEaPHiwRo0apdDQUAUFBWn48OGKj4/nEzwAAECSFwrKnDlzJEnt27d3mz9v3jz95je/kSS9/PLL8vHxUa9eveR0OpWYmKjZs2d7OgoAAKigPF5QjDE/uY6/v79mzZqlWbNmeXr3AACgEuC3eAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACs41veAQBcf2LGrryq+x+Z2q3cM3gqB4DScQYFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsE65FpRZs2YpJiZG/v7+at26tbZu3VqecQAAgCXKraC88847GjVqlCZMmKAdO3bo1ltvVWJiok6cOFFekQAAgCXKraC89NJLGjJkiAYNGqQmTZooJSVF1atX15tvvllekQAAgCV8y2On586dU0ZGhpKTk13zfHx8lJCQoLS0tIvWdzqdcjqdrtt5eXmSpPz8/Evuo9j57VXnvNz2f66rzUEGMpDBzgyeyEEGMlxvGS4sM8b89IZMOTh27JiRZLZs2eI2f/To0aZVq1YXrT9hwgQjiYmJiYmJiakSTFlZWT/ZFcrlDEpZJScna9SoUa7bxcXFOn36tMLCwuRwOK5om/n5+YqKilJWVpaCgoI8FZUMZCADGchQyTLYkqMyZDDG6MyZM4qMjPzJdculoNSuXVtVqlRRTk6O2/ycnBxFRERctL6fn5/8/Pzc5oWEhHgkS1BQULke9GQgAxnIQIaKkcGWHBU9Q3Bw8M9ar1wukq1WrZpatGihdevWueYVFxdr3bp1io+PL49IAADAIuX2Fs+oUaM0cOBA3XHHHWrVqpVmzJihs2fPatCgQeUVCQAAWKLcCsqvfvUrnTx5UuPHj1d2drZuu+02rV69WuHh4ddk/35+fpowYcJFbx1dS2QgAxnIQAb7M9iS43rL4DDm53zWBwAA4Nrht3gAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFinQnzVvacUFRUpOztb3377rerUqaPQ0NByy+J0Osv9Y3PlkWH//v1asmSJNm/erC+//NL1XDRv3lyJiYnq1avXNc/EOJRgHEqU559NXqPsyGDTcXk9HxOV/gzKmTNnNGfOHN1zzz0KCgpSTEyM4uLiVKdOHdWvX19DhgzRtm3bvJ5j1apVGjhwoG688UZVrVpV1atXV1BQkO655x5NnjxZx48fr9QZduzYoYSEBDVv3lwfffSRWrdurREjRuj5559X//79ZYzRs88+q8jISL344otuv17taYxDCcahRHn/2eQ1yp4MthyXHBMlKvX3oLz00kuaPHmyfvnLX+qBBx5Qq1atFBkZqYCAAJ0+fVp79uzR5s2btWzZMrVu3VqvvvqqGjZs6NEMS5cu1ZgxY3TmzBl17dr1khnS0tL0m9/8Rs8//7zq1KlT6TLExsZq9OjR+vWvf33Z31FKS0vTK6+8oltuuUV/+MMfPJqBcSjBOJSwYRx4jbIng2THcckx8QM/+XvHFVifPn3Mnj17fnK9wsJCM2fOHPPGG294PMOdd95pVqxYYc6fP3/Z9b766iszZswY89JLL1XKDOfOnfPq+j8H41CCcShhwzjwGmVPBmPsOC45Jv5PpT6DAgAAKqZKfw0K7PLdd9/po48+0r59+y5aVlhYqIULF5ZDqmuPcSjBOMBGHJeW8Mp5mQrk0KFDpkOHDl7fz/Hjx81bb71lVq5caZxOp9uygoICM3HiRK9nuJyjR4+aQYMGeXUfBw4cMPXr1zcOh8P4+PiYu+++2xw/fty1PDs72/j4+Hg1w09hHEowDiWuxTj8FF6jSlyr56IiHJfXyzFx3ReUnTt3ev1g27p1qwkJCTFBQUEmICDANGjQwO09RhsO+GsxDj169DDdunUzJ0+eNAcPHjTdunUzsbGx5ssvvzTGMA6Mw/U5DjZk4DXq/3BclrDhmKj034Myc+bMyy4/duyY1zP84Q9/UM+ePfX666/r7NmzGjNmjO655x6tXbtWzZs39/r+JemDDz647PLDhw97PcOWLVv04Ycfqnbt2qpdu7aWL1+uJ554QnfddZc2bNigwMBAr2dgHEowDiVsGAdeo0rY8FxIdhyXHBP/n1frjwUcDoeJjIw0MTExpU6RkZFeb4G1atUyBw4ccJs3ZcoUU6tWLbN169Zr0kQvnK50OByXnLydoWbNmmbfvn0XzU9KSjI33HCDSU1NZRwYh+tuHHiNKmHDc2GMPcclx8R18BZPTEyMeeeddy65/NNPP70mT/SuXbsumv/nP//ZhISEmPfee8/rGSIjI82yZcsuufxajEPLli3NwoULS12WlJRkQkJCGAfGwRhzfY0Dr1ElbHgujLHjuOSYKFHpP8XTokULZWRkXHK5w+GQ8fInrZs2baotW7ZcNP/3v/+9kpOT1bdvX6/uX7JjHHr27Km333671GV//etf1bdvX69nYBxKMA4lbBgHGzLwGvV/OC5L2HBMVPozKHv37jXbtm275PJz586ZI0eOeDXD3LlzTf/+/S+5fOrUqSYmJsarGVJTU82qVasuubygoMBs3LjRqxlswDiUYBxK2DAOvEaVsOG5sAXHRAm+qA0AAFin0r/FAwAAKh4KCgAAsA4FBQAAWIeCAgAArENBgVVSU1OVl5dX3jHKHeNQgnGAjTgurw0KiqSFCxfqiy++uO4z2PCHrn379rrxxhv1l7/8pdwyMA4lGIcSNoyDDa8PNmSw4bmQ7DgubXg+vJ7Bqx9iriAcDoepVq2aGTZs2HWfITQ01EyfPr3cMhw5csSsX7/ejB49utwyMA4lGIcSNoyDLa8PNmQo7+fCGHuOSxueD29mqPQ/FvhzFBcXKzMzU6tWrbquM2RmZurw4cPlmqF+/fqqX7++OnToUG4ZGIcSjEMJG8bBhtcHGzLY8FxIdhyXNjwf3s7AF7UBlsjJyZHT6VR0dHR5RylXEydOVFJSkmrXrl3eUXAd+vrrrzn2LHHdX4Py/fff6+jRo9d9hmtl9uzZSkhIUO/evbVu3Tq3ZV9//bVuvPHGcsmVk5NzzZ6DM2fOqH///qpfv74GDhyoc+fOKSkpSfXq1VNsbKzuuece5efnX5MsPzZx4kR9/fXX12Rf+fn5F015eXmaPHmyDh8+7JpXHoqKisplv1LJ68HatWv1xhtv6MMPP9T58+eviwzX6rj7KeHh4erUqZMWL14sp9NZbjnOnz+vw4cPq7i4WJLkdDr197//XUuWLFFOTs71kcErbxxVIDt37rwmv5BpQ4ZZs2aZTp06mUceecR8+OGHbstOnjxpYmNjvbr/V155xVSvXt0kJSWZ/v37m2rVqpk//elPruXX4ue78/PzTb9+/Ux0dLR59NFHjdPpNE888YTrp9zvvvtuk5eX59UMw4YNM40bNzYzZ8407du3N927dzdNmzY1H330kdm0aZNp0qSJ+cMf/uDVDHl5eRdNubm5pmrVqiY9Pd01z5t8fHxKnS48Fxf+603vvPOOcTqdrtuvvvqqiY6ONj4+PiYsLMxMnDjRq/s3puR4WL58uTHGmKysLNO4cWNTpUoVEx4ebqpUqWKaNWtmvvrqq0qfwcfHx3Ts2NEsWrTIFBYWenVfl+NwOEznzp1NtWrVTK1atcywYcPMp59+ek0z7Nq1y9SrV8/4+PiYpk2bmqNHj5qmTZuawMBAU6NGDVOrVi2zdevWSp+BgnKdFBQbykGTJk3MokWLXLc//vhjU6dOHTNu3LhrlsGGchAVFWXWr19vjDHm2LFjxuFwuP5yMMaYFStWmEaNGnk1gw3l4Be/+IXp1q2bWb9+vdm4caPZuHGj2bBhg6lSpYqZN2+ea543+fj4mJycHGOMMW+++abx9/c348ePNytXrjQvvPCCCQwMNHPnzvVqhvDwcLN7925jjDG9e/c2CQkJ5uTJk8YYY06dOmXuv/9+8/DDD1f6DDYUgws5cnJyzMmTJ8306dNNkyZNjI+Pj7n99tvN7NmzvV7cjTEmMTHRPPzww2b37t3mqaeeMnFxceaRRx4x586dM0VFRaZ///4mISGh0meo9AWlefPml50aN27s9RdiGzLYUA4CAgJMZmam27zdu3eb8PBwM3bs2GuSwYZy4OfnZ44ePeq6Xb16dXPgwAHX7SNHjpjq1at7NYMN5eDUqVOmR48epkOHDm7/Ovf19TV79+716r4vuPCXkTHGtGrVykybNs1t+ezZs03z5s29msHf398cPnzYGGPMDTfcYNLT092W796929SuXbvSZ7ChGPwwxw9t2bLF/Pa3vzU1a9Y01atXNwMGDPBqhlq1apl9+/YZY4z59ttvTZUqVdyekz179piwsLBKn6HSf4pn37596tOnj2JjY0td/t///leff/55pc+QmZmpNm3auG63adNG69evV0JCgoqKijRixAiv7l+SateuraysLMXExLjmNW3aVOvXr1fHjh11/Phxr2c4ceKEGjRoIEmKjIxUQECAbrrpJrc8WVlZXs0QFhamkydPKioqSpLUvXt3hYSEuJYXFBTIz8/Pqxk+++wzDR48WM8//7zeeust/eIXv5AkORwOtWrVSk2aNPHq/iUpNDRUS5cu1Zw5c9SqVStNnz5dffv29fp+f8zhcEiSDh8+rPvuu89t2X333acxY8Z4df833XSTtm7dqtjYWNWsWfOi627OnDnjugagMme4oHbt2nr66af19NNPKy0tTa+//rrGjBmj3//+9+rVq5cWLlzo1f1fOB5+KD4+XvHx8Zo5c6aWLFmiN99806sZjDHy9S356/nH/5WkKlWqeP35sCFDpT+D0qJFCzN79uxLLv/000+9/q92GzJERUWZ1NTUi+bv3bvXhIeHm0cffdTrGfr27WtGjBhR6rI9e/aYOnXqeD1DZGSkycjIcMv0w38t7dmzx9SqVcurGTp37mxSUlIuuXzevHmmTZs2Xs1wwezZs01kZKRZvHixMebanr34ob1795pbb73V9O3b95qfQVm4cKF5//33zQ033GC2bNnitnzPnj0mKCjIqxnmzZtnbrjhBrNhwwazcOFCExcXZz788ENz7Ngxs379etOsWTPz2GOPVfoMP3y77ccKCgrM66+/fk3+XJR2BuVa69Spkxk8eLD56quvzMSJE02DBg3MoEGDXMufeOIJc9ddd1X6DJW+oDz55JPmqaeeuuTyQ4cOmfbt21f6DDaUg127dpk333zzkst3795t/vjHP3o1gw3l4NSpU+abb7655PJ//etfZsOGDV7N8EPlVQ5+zOl0mpEjR5rbbrvN9XaDtzkcDrfphRdecFv++uuve/0tHmOM+ctf/mKqV69uAgICTLVq1dyuC+rRo4c5c+ZMpc9gQzEwxpj58+eX60W6xhizdetWExYWZnx8fEydOnXMnj17TOvWrU1ERISJjIw0AQEBF33QoTJm4HtQrhOfffaZMjIyNGjQoFKX79mzR//85z81YcKEa5zs2jp9+rR8fHzc3lL5oVWrVikgIEDt27e/prnK27lz5zR27Fht2LBB77333iXfjrzerFixQlWrVlViYqLX95Wbm6u1a9e6PtZZr149tW3bVg0bNvT6vm3IsGDBAvXp08frb29WFGfPntV//vMfNWrUSDVq1FBhYaEWLVqk7777Tvfee68aNWpU6TNQUHBNHD16tExfQHbs2DHXdRGVCeNQgnGAjTgu7VKpv6itrF+8dezYMTJ4KUPLli31+OOPa9u2bZdcJy8vT3PnzlXTpk31z3/+0+MZGIcSjEMJG8aBDPZkkDgubcogqXJfJFu3bl0zdOjQy36ZTG5urnnttdfMzTffbF555RUyeCnD119/bUaOHGmCg4NNeHi46dq1q3nsscfMsGHDTL9+/Uzz5s1NtWrVzJ133mlWrlzp8f0bwzhcwDiUsGEcyGBPBmM4Lm3KYEwlvwbl1KlTmjx5st588035+/urRYsWioyMlL+/v7755hvt27dPe/fu1e23365x48apa9euZPBShgu+++47rVy5Uh999JG+/PJLfffdd6pdu7aaN2+uxMRENW3a1Gv7ZhxKMA4lbBgHMtiT4Yc4Lss/g3SdXINSngcbGezDOJRgHErYMA5ksCeDLWwYi/LOcF0UFAAAULFU6otkAQBAxURBAQAA1qGgAAAA61BQAACAdSgoAH42h8OhZcuWXXJ5TEyMZsyYcc3ylKefGgsAV4eCAlRAJ0+e1O9+9ztFR0fLz89PERERSkxM1Mcff1yuubZt26ahQ4dek319+umn+tWvfqV69erJz89P9evX1/3336/ly5eLDycCFZ9veQcAUHa9evXSuXPntGDBAt14443KycnRunXrdOrUqXLNVadOnWuyn/fff1+9e/dWQkKCFixYoAYNGsjpdGrLli167rnndNddd13yByFtce7cOVWrVq28YwD28sr30wLwmm+++cZIMhs3brzkOpJMSkqK6datmwkICDCNGzc2W7ZsMQcPHjT33HOPqV69uomPjzeHDh1yu9/s2bPNjTfeaKpWrWpuuukms3Dhwou2u3TpUtft8ePHm4iICLNr1y5jjDH169c3L7/8stv6c+fONT169DABAQGmQYMG5v3333fb5vvvv28aNGhg/Pz8TPv27c38+fONJPPNN9+U+tgKCgpMWFiY6dmz5yUff3Fxsev/d+/ebTp37mwCAwNN3bp1Tf/+/c3Jkyddy++55x4zfPhwM3r0aFOrVi0THh5uJkyY4La9zz//3Nx1113Gz8/PxMXFmX//+98XjcXRo0fNI488YoKDg02tWrXMgw8+aDIzM13LBw4caLp3725eeOEFU69ePRMTE3PJ/ACM4S0eoIKpUaOGatSooWXLlsnpdF5yveeff16PPvqodu7cqcaNG+vXv/61Hn/8cSUnJ2v79u0yxmjYsGGu9ZcuXaqnnnpKTz/9tPbs2aPHH39cgwYN0oYNGy7atjFGw4cP18KFC7V582bdcsstl8wxceJE9e7dW5999pm6du2qfv366fTp05KkzMxMPfzww+rRo4d27dqlxx9/XM8+++xlH/+///1vnTp1Ss8888wl13E4HJKk3NxcdezYUc2bN9f27du1evVq5eTkqHfv3m7rL1iwQIGBgUpPT9e0adM0adIkrV27VpJUXFyshx56SNWqVVN6erpSUlI0ZswYt/sXFRUpMTFRNWvW1ObNm/Xxxx+rRo0a6ty5s86dO+dab926dTpw4IDWrl2rFStWXPZxAte98m5IAMruH//4h6lVq5bx9/c3bdq0McnJya6zGMaUnLl47rnnXLfT0tKMJPPGG2+45r399tvG39/fdbtNmzZmyJAhbvt55JFHTNeuXd22++6775pf//rXJi4uznz11Vdu65d2BuWHOQoKCowks2rVKmOMMWPGjDFNmzZ128azzz572TMoU6dONZLM6dOnXfO2bt1qAgMDXdPy5cuNMcY8//zz5r777nO7f1ZWlpFkDhw4YIwpOYPSrl07t3VatmxpxowZY4wxZs2aNcbX19ccO3bMtXzVqlVuZ1Deeust06hRI7czN06n0wQEBJg1a9YYY0rOoISHhxun01nq4wLgjjMoQAXUq1cvHT9+XB988IE6d+6sjRs36vbbb9f8+fNd6/zwrEZ4eLgkqVmzZm7zCgsLlZ+fL0nav3+/2rZt67aftm3bav/+/W7zRo4cqfT0dKWmpuoXv/jFT2b9YY7AwEAFBQXpxIkTkqQDBw6oZcuWbuu3atXqJ7dZ2j527typnTt36uzZs/r+++8lSbt27dKGDRtcZ51q1Kihxo0bS5K++OKLUjNKUr169VwZ9+/fr6ioKEVGRrqWx8fHu62/a9cuHTp0SDVr1nTtJzQ0VIWFhW77adasGdedAD8TF8kCFZS/v7/uvfde3XvvvRo3bpwee+wxTZgwQb/5zW8kSVWrVnWte+Etj9LmFRcXl2m/9957r95++22tWbNG/fr1+8n1f7jPC/st6z5/qGHDhpJKys2dd94pSfLz81ODBg0uWregoEAPPPCAXnzxxYuW1atXz2MZCwoK1KJFCy1atOiiZT+8cDgwMPBnbxO43nEGBagkmjRporNnz17x/ePi4i76mPLHH3+sJk2auM178MEHtXjxYj322GNasmTJFe9Pkho1aqTt27e7zdu2bdtl73PfffcpNDS01NLxY7fffrv27t2rmJgYNWjQwG36uWUhLi5OWVlZ+u9//+ua98knn1y0n4MHD6pu3boX7Sc4OPhn7QeAOwoKUMGcOnVKHTt21P/+7//qs88+U2Zmpt59911NmzZN3bt3v+Ltjh49WvPnz9ecOXN08OBBvfTSS3rvvff0+9///qJ1e/bsqbfeekuDBg3SP/7xjyve5+OPP67//Oc/GjNmjD7//HP9/e9/d71NdeEMz4/VqFFDr7/+ulauXKlu3bppzZo1Onz4sD777DNNmzZNklSlShVJUlJSkk6fPq2+fftq27Zt+uKLL7RmzRoNGjRI58+f/1kZExISdNNNN2ngwIHatWuXNm/efNGFvP369VPt2rXVvXt3bd68WZmZmdq4caOefPJJffXVV1c4OsD1jYICVDA1atRQ69at9fLLL+vuu+9W06ZNNW7cOA0ZMkR//etfr3i7PXr00CuvvKLp06fr5ptv1t/+9jfNmzdP7du3L3X9hx9+WAsWLNCAAQP03nvvXdE+Y2Nj9Y9//EPvvfeebrnlFs2ZM8f1l7+fn59rPYfD4XZ9Tc+ePbVlyxZVr15djz76qBo1aqSOHTtq/fr1WrJkie6//35JUmRkpD7++GOdP39e9913n5o1a6YRI0YoJCREPj4/7+XPx8dHS5cu1XfffadWrVrpscce0+TJk93WqV69ulJTUxUdHa2HHnpIcXFxGjx4sAoLCxUUFHRFYwNc7xzG8JWLAOwxefJkpaSkKCsrS1LJR5Fvuukm7du3z3X9CYDKj4tkAZSr2bNnq2XLlgoLC9PHH3+sP//5z27fz/Kvf/1LQ4cOpZwA1xnOoAAoVyNHjtQ777yj06dPKzo6WgMGDFBycrJ8ffn3E3A9o6AAAADrcJEsAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALDO/wPlqdLE5OQQUgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dane6 = dane.groupby(['Smoking','Gender'])\n",
"dane6[['Smoking', 'Gender']].value_counts().plot(kind = 'bar')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "15eebd5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Air Pollution\n",
"8 19\n",
"5 20\n",
"7 30\n",
"4 90\n",
"1 141\n",
"3 173\n",
"2 201\n",
"6 326\n",
"Name: count, dtype: int64"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dane7 = dane['Air Pollution'].value_counts()\n",
"dane7.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "98359ff2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Air Pollution'>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGrCAYAAADqwWxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm6UlEQVR4nO3df1SVdYLH8c/l1xWDewkCrmwIpmNA/shV06uNOUkiMmYbncQ1tY5HTx50tygr2lLTZjCnpmZG0zOzNlYr/minbKXRRmnEncJfOIymxqjpwCxcdHUBtREUnv1jjvd08ycI3i/wfp3znON9vt97n+9zKHn73F82y7IsAQAAGCTA3wsAAAD4LgIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYJ8vcCWqKpqUmVlZUKDw+XzWbz93IAAMB1sCxLp0+fVlxcnAICrn6NpF0GSmVlpeLj4/29DAAA0AIVFRW6/fbbrzqnXQZKeHi4pL+foMPh8PNqAADA9airq1N8fLz39/jVtMtAufi0jsPhIFAAAGhnruflGbxIFgAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcYL8vQB/SXzhE78d+9iiDL8dGwCA9oArKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTrEBZtmyZ+vXrJ4fDIYfDIbfbrY0bN3rHz507p+zsbEVFRSksLEyZmZmqrq72eYzy8nJlZGSoa9euiomJ0Zw5c3ThwoXWORsAANAhNCtQbr/9di1atEglJSXavXu37r//fo0fP1779++XJD399NPasGGDPvjgAxUVFamyslIPP/yw9/6NjY3KyMhQQ0ODvvjiC7377rtauXKl5s6d27pnBQAA2jWbZVnWjTxAZGSkfvKTn+iRRx5RdHS08vPz9cgjj0iSvvrqKyUnJ6u4uFhDhw7Vxo0b9cMf/lCVlZWKjY2VJC1fvlzPP/+8Tpw4oZCQkOs6Zl1dnZxOp2pra+VwOFq07sQXPmnR/VrDsUUZfjs2AAD+0pzf3y1+DUpjY6PWrFmjs2fPyu12q6SkROfPn1dqaqp3TlJSkrp3767i4mJJUnFxsfr27euNE0lKS0tTXV2d9yrM5dTX16uurs5nAwAAHVezA2Xfvn0KCwuT3W7Xk08+qY8++kgpKSnyeDwKCQlRRESEz/zY2Fh5PB5Jksfj8YmTi+MXx64kLy9PTqfTu8XHxzd32QAAoB1pdqDceeedKi0t1Y4dOzRz5kxNnTpVBw4caIu1eeXm5qq2tta7VVRUtOnxAACAfwU19w4hISHq1auXJGngwIHatWuXfvazn2nChAlqaGhQTU2Nz1WU6upquVwuSZLL5dLOnTt9Hu/iu3wuzrkcu90uu93e3KUCAIB26oY/B6WpqUn19fUaOHCggoODVVhY6B0rKytTeXm53G63JMntdmvfvn06fvy4d87mzZvlcDiUkpJyo0sBAAAdRLOuoOTm5io9PV3du3fX6dOnlZ+fr61bt+rTTz+V0+nUtGnTlJOTo8jISDkcDs2ePVtut1tDhw6VJI0ePVopKSmaPHmyFi9eLI/Ho5deeknZ2dlcIQEAAF7NCpTjx49rypQpqqqqktPpVL9+/fTpp5/qgQcekCS9+eabCggIUGZmpurr65WWlqa3337be//AwEAVFBRo5syZcrvduuWWWzR16lQtWLCgdc8KAAC0azf8OSj+wOegAADQ/tyUz0EBAABoKwQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTrEDJy8vT4MGDFR4erpiYGD300EMqKyvzmTNy5EjZbDaf7cknn/SZU15eroyMDHXt2lUxMTGaM2eOLly4cONnAwAAOoSg5kwuKipSdna2Bg8erAsXLujFF1/U6NGjdeDAAd1yyy3eedOnT9eCBQu8t7t27er9c2NjozIyMuRyufTFF1+oqqpKU6ZMUXBwsH784x+3wikBAID2rlmBsmnTJp/bK1euVExMjEpKSjRixAjv/q5du8rlcl32MX73u9/pwIED2rJli2JjY3X33Xdr4cKFev755zV//nyFhIS04DQAAEBHckOvQamtrZUkRUZG+uxftWqVbrvtNvXp00e5ubn65ptvvGPFxcXq27evYmNjvfvS0tJUV1en/fv3X/Y49fX1qqur89kAAEDH1awrKN/W1NSkp556SsOHD1efPn28+//5n/9ZCQkJiouL0969e/X888+rrKxMH374oSTJ4/H4xIkk722Px3PZY+Xl5emVV15p6VIBAEA70+JAyc7O1pdffqk//OEPPvtnzJjh/XPfvn3VrVs3jRo1SkeOHFHPnj1bdKzc3Fzl5OR4b9fV1Sk+Pr5lCwcAAMZr0VM8s2bNUkFBgX7/+9/r9ttvv+rcIUOGSJIOHz4sSXK5XKqurvaZc/H2lV63Yrfb5XA4fDYAANBxNStQLMvSrFmz9NFHH+mzzz5Tjx49rnmf0tJSSVK3bt0kSW63W/v27dPx48e9czZv3iyHw6GUlJTmLAcAAHRQzXqKJzs7W/n5+fr4448VHh7ufc2I0+lUaGiojhw5ovz8fI0dO1ZRUVHau3evnn76aY0YMUL9+vWTJI0ePVopKSmaPHmyFi9eLI/Ho5deeknZ2dmy2+2tf4YAAKDdadYVlGXLlqm2tlYjR45Ut27dvNvatWslSSEhIdqyZYtGjx6tpKQkPfPMM8rMzNSGDRu8jxEYGKiCggIFBgbK7Xbrscce05QpU3w+NwUAAHRuzbqCYlnWVcfj4+NVVFR0zcdJSEjQb3/72+YcGgAAdCJ8Fw8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4zQrUPLy8jR48GCFh4crJiZGDz30kMrKynzmnDt3TtnZ2YqKilJYWJgyMzNVXV3tM6e8vFwZGRnq2rWrYmJiNGfOHF24cOHGzwYAAHQIzQqUoqIiZWdna/v27dq8ebPOnz+v0aNH6+zZs945Tz/9tDZs2KAPPvhARUVFqqys1MMPP+wdb2xsVEZGhhoaGvTFF1/o3Xff1cqVKzV37tzWOysAANCu2SzLslp65xMnTigmJkZFRUUaMWKEamtrFR0drfz8fD3yyCOSpK+++krJyckqLi7W0KFDtXHjRv3whz9UZWWlYmNjJUnLly/X888/rxMnTigkJOSax62rq5PT6VRtba0cDkeL1p74wictul9rOLYow2/HBgDAX5rz+zvoRg5UW1srSYqMjJQklZSU6Pz580pNTfXOSUpKUvfu3b2BUlxcrL59+3rjRJLS0tI0c+ZM7d+/XwMGDLjkOPX19aqvr/c5QbQMYQYAaA9a/CLZpqYmPfXUUxo+fLj69OkjSfJ4PAoJCVFERITP3NjYWHk8Hu+cb8fJxfGLY5eTl5cnp9Pp3eLj41u6bAAA0A60OFCys7P15Zdfas2aNa25nsvKzc1VbW2td6uoqGjzYwIAAP9p0VM8s2bNUkFBgbZt26bbb7/du9/lcqmhoUE1NTU+V1Gqq6vlcrm8c3bu3OnzeBff5XNxznfZ7XbZ7faWLBUAALRDzbqCYlmWZs2apY8++kifffaZevTo4TM+cOBABQcHq7Cw0LuvrKxM5eXlcrvdkiS32619+/bp+PHj3jmbN2+Ww+FQSkrKjZwLAADoIJp1BSU7O1v5+fn6+OOPFR4e7n3NiNPpVGhoqJxOp6ZNm6acnBxFRkbK4XBo9uzZcrvdGjp0qCRp9OjRSklJ0eTJk7V48WJ5PB699NJLys7O5ioJAACQ1MxAWbZsmSRp5MiRPvt//etf6/HHH5ckvfnmmwoICFBmZqbq6+uVlpamt99+2zs3MDBQBQUFmjlzptxut2655RZNnTpVCxYsuLEzAQAAHUazAuV6PjKlS5cuWrp0qZYuXXrFOQkJCfrtb3/bnEMDAIBOhO/iAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHGC/L0A4GZIfOETvx372KIMvx0bANorrqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjNPsQNm2bZvGjRunuLg42Ww2rV+/3mf88ccfl81m89nGjBnjM+fUqVOaNGmSHA6HIiIiNG3aNJ05c+aGTgQAAHQczQ6Us2fPqn///lq6dOkV54wZM0ZVVVXebfXq1T7jkyZN0v79+7V582YVFBRo27ZtmjFjRvNXDwAAOqSg5t4hPT1d6enpV51jt9vlcrkuO3bw4EFt2rRJu3bt0qBBgyRJv/jFLzR27Fi9/vrriouLa+6SAABAB9Mmr0HZunWrYmJidOedd2rmzJk6efKkd6y4uFgRERHeOJGk1NRUBQQEaMeOHZd9vPr6etXV1flsAACg42r1QBkzZozee+89FRYW6rXXXlNRUZHS09PV2NgoSfJ4PIqJifG5T1BQkCIjI+XxeC77mHl5eXI6nd4tPj6+tZcNAAAM0uyneK4lKyvL++e+ffuqX79+6tmzp7Zu3apRo0a16DFzc3OVk5PjvV1XV0ekAADQgbX524zvuOMO3XbbbTp8+LAkyeVy6fjx4z5zLly4oFOnTl3xdSt2u10Oh8NnAwAAHVebB8pf//pXnTx5Ut26dZMkud1u1dTUqKSkxDvns88+U1NTk4YMGdLWywEAAO1As5/iOXPmjPdqiCQdPXpUpaWlioyMVGRkpF555RVlZmbK5XLpyJEjeu6559SrVy+lpaVJkpKTkzVmzBhNnz5dy5cv1/nz5zVr1ixlZWXxDh4AACCpBVdQdu/erQEDBmjAgAGSpJycHA0YMEBz585VYGCg9u7dqwcffFC9e/fWtGnTNHDgQP33f/+37Ha79zFWrVqlpKQkjRo1SmPHjtW9996rX/7yl613VgAAoF1r9hWUkSNHyrKsK45/+umn13yMyMhI5efnN/fQAACgk+C7eAAAgHEIFAAAYBwCBQAAGKfVP6gNgDkSX/jEb8c+tijDb8cG0P5xBQUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHGaHSjbtm3TuHHjFBcXJ5vNpvXr1/uMW5aluXPnqlu3bgoNDVVqaqoOHTrkM+fUqVOaNGmSHA6HIiIiNG3aNJ05c+aGTgQAAHQczQ6Us2fPqn///lq6dOllxxcvXqyf//znWr58uXbs2KFbbrlFaWlpOnfunHfOpEmTtH//fm3evFkFBQXatm2bZsyY0fKzAAAAHUpQc++Qnp6u9PT0y45ZlqW33npLL730ksaPHy9Jeu+99xQbG6v169crKytLBw8e1KZNm7Rr1y4NGjRIkvSLX/xCY8eO1euvv664uLgbOB0AANARtOprUI4ePSqPx6PU1FTvPqfTqSFDhqi4uFiSVFxcrIiICG+cSFJqaqoCAgK0Y8eOyz5ufX296urqfDYAANBxtWqgeDweSVJsbKzP/tjYWO+Yx+NRTEyMz3hQUJAiIyO9c74rLy9PTqfTu8XHx7fmsgEAgGHaxbt4cnNzVVtb690qKir8vSQAANCGWjVQXC6XJKm6utpnf3V1tXfM5XLp+PHjPuMXLlzQqVOnvHO+y263y+Fw+GwAAKDjatVA6dGjh1wulwoLC7376urqtGPHDrndbkmS2+1WTU2NSkpKvHM+++wzNTU1aciQIa25HAAA0E41+108Z86c0eHDh723jx49qtLSUkVGRqp79+566qmn9Oqrr+p73/ueevTooZdffllxcXF66KGHJEnJyckaM2aMpk+fruXLl+v8+fOaNWuWsrKyeAcPAACQ1IJA2b17t37wgx94b+fk5EiSpk6dqpUrV+q5557T2bNnNWPGDNXU1Ojee+/Vpk2b1KVLF+99Vq1apVmzZmnUqFEKCAhQZmamfv7zn7fC6QAAgI6g2YEycuRIWZZ1xXGbzaYFCxZowYIFV5wTGRmp/Pz85h4aAAB0Eu3iXTwAAKBzIVAAAIBxCBQAAGAcAgUAABin2S+SBQDTJb7wid+OfWxRht+ODXQkXEEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxWj1Q5s+fL5vN5rMlJSV5x8+dO6fs7GxFRUUpLCxMmZmZqq6ubu1lAACAdqxNrqDcddddqqqq8m5/+MMfvGNPP/20NmzYoA8++EBFRUWqrKzUww8/3BbLAAAA7VRQmzxoUJBcLtcl+2tra7VixQrl5+fr/vvvlyT9+te/VnJysrZv366hQ4e2xXIAAEA70yZXUA4dOqS4uDjdcccdmjRpksrLyyVJJSUlOn/+vFJTU71zk5KS1L17dxUXF1/x8err61VXV+ezAQCAjqvVA2XIkCFauXKlNm3apGXLluno0aP6/ve/r9OnT8vj8SgkJEQRERE+94mNjZXH47niY+bl5cnpdHq3+Pj41l42AAAwSKs/xZOenu79c79+/TRkyBAlJCRo3bp1Cg0NbdFj5ubmKicnx3u7rq6OSAEAoANr87cZR0REqHfv3jp8+LBcLpcaGhpUU1PjM6e6uvqyr1m5yG63y+Fw+GwAAKDjavNAOXPmjI4cOaJu3bpp4MCBCg4OVmFhoXe8rKxM5eXlcrvdbb0UAADQTrT6UzzPPvusxo0bp4SEBFVWVmrevHkKDAzUxIkT5XQ6NW3aNOXk5CgyMlIOh0OzZ8+W2+3mHTwAAMCr1QPlr3/9qyZOnKiTJ08qOjpa9957r7Zv367o6GhJ0ptvvqmAgABlZmaqvr5eaWlpevvtt1t7GQAAoB1r9UBZs2bNVce7dOmipUuXaunSpa19aAAA0EHwXTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBOkL8XAABoHYkvfOK3Yx9blOG3Y6Nj4goKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjMNH3QMA2jU+4r9jIlAAAGiHOnqY8RQPAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4fg2UpUuXKjExUV26dNGQIUO0c+dOfy4HAAAYwm+BsnbtWuXk5GjevHnas2eP+vfvr7S0NB0/ftxfSwIAAIbwW6D89Kc/1fTp0/XEE08oJSVFy5cvV9euXfXOO+/4a0kAAMAQQf44aENDg0pKSpSbm+vdFxAQoNTUVBUXF18yv76+XvX19d7btbW1kqS6uroWr6Gp/psW3/dG3ci6bxTnffNx3jcf533zcd43X3s874v3syzr2pMtP/if//kfS5L1xRdf+OyfM2eOdc8991wyf968eZYkNjY2NjY2tg6wVVRUXLMV/HIFpblyc3OVk5Pjvd3U1KRTp04pKipKNpvtpq6lrq5O8fHxqqiokMPhuKnH9ifOm/PuDDhvzrsz8Od5W5al06dPKy4u7ppz/RIot912mwIDA1VdXe2zv7q6Wi6X65L5drtddrvdZ19ERERbLvGaHA5Hp/oP+iLOu3PhvDsXzrtz8dd5O53O65rnlxfJhoSEaODAgSosLPTua2pqUmFhodxutz+WBAAADOK3p3hycnI0depUDRo0SPfcc4/eeustnT17Vk888YS/lgQAAAzht0CZMGGCTpw4oblz58rj8ejuu+/Wpk2bFBsb668lXRe73a558+Zd8pRTR8d5c96dAefNeXcG7eW8bZZ1Pe/1AQAAuHn4Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAD4Ft43AJiBQAGAb7Hb7Tp48KC/lwF0eu3iu3j8Zc+ePbr11lvVo0cPSdL777+v5cuXq7y8XAkJCZo1a5aysrL8vMq28be//U0lJSWKjIxUSkqKz9i5c+e0bt06TZkyxU+razsHDx7U9u3b5Xa7lZSUpK+++ko/+9nPVF9fr8cee0z333+/v5foFxUVFZo3b57eeecdfy+l1Xz7+72+rbGxUYsWLVJUVJQk6ac//enNXFabmz17th599FF9//vf9/dS/Ors2bNat26dDh8+rG7dumnixInen3lHs2TJEu3cuVNjx45VVlaW3n//feXl5ampqUkPP/ywFixYoKAgA3OgVb6euIPq16+ftXnzZsuyLOtXv/qVFRoaav3Lv/yLtWzZMuupp56ywsLCrBUrVvh5la2vrKzMSkhIsGw2mxUQEGCNGDHCqqys9I57PB4rICDAjytsGxs3brRCQkKsyMhIq0uXLtbGjRut6OhoKzU11br//vutwMBAq7Cw0N/L9IvS0tIO9zO32WzW3XffbY0cOdJns9ls1uDBg62RI0daP/jBD/y9zFZ38f/r733ve9aiRYusqqoqfy/ppkhOTrZOnjxpWZZllZeXW4mJiZbT6bQGDx5sRUZGWjExMdbXX3/t51W2voULF1rh4eFWZmam5XK5rEWLFllRUVHWq6++av34xz+2oqOjrblz5/p7mZdFoFxFaGiodezYMcuyLGvAgAHWL3/5S5/xVatWWSkpKf5YWpt66KGHrIyMDOvEiRPWoUOHrIyMDKtHjx7WX/7yF8uyOm6guN1u69/+7d8sy7Ks1atXW7feeqv14osvesdfeOEF64EHHvDX8trUxx9/fNXtzTff7HA/87y8PKtHjx6XRGdQUJC1f/9+P62q7dlsNmvLli3Wv/7rv1q33XabFRwcbD344IPWhg0brMbGRn8vr83YbDarurrasizLmjRpkjVs2DCrpqbGsizLOn36tJWammpNnDjRn0tsEz179rR+85vfWJb1939oBAYGWv/xH//hHf/www+tXr16+Wt5V0WgXEVUVJS1e/duy7IsKyYmxiotLfUZP3z4sBUaGuqPpbWpmJgYa+/evd7bTU1N1pNPPml1797dOnLkSIcNFIfDYR06dMiyLMtqbGy0goKCrD179njH9+3bZ8XGxvpreW3q4r+qbTbbFbeO+DPfuXOn1bt3b+uZZ56xGhoaLMvqHIFy8Rd1Q0ODtXbtWistLc0KDAy04uLirBdffNH7/0FH8u3zvuOOO6zf/e53PuOff/65FR8f74+ltanQ0FDvPy4ty7KCg4OtL7/80nv72LFjVteuXf2xtGviRbJXkZ6ermXLlkmS7rvvPv3nf/6nz/i6devUq1cvfyytTf3tb3/zeT7SZrNp2bJlGjdunO677z79+c9/9uPq2pbNZpMkBQQEqEuXLj5fCx4eHq7a2lp/La1NdevWTR9++KGampouu+3Zs8ffS2wTgwcPVklJiU6cOKFBgwbpyy+/9P430BkEBwfr0Ucf1aZNm/T1119r+vTpWrVqle68805/L61NXPzZnjt3Tt26dfMZ+4d/+AedOHHCH8tqUy6XSwcOHJAkHTp0SI2Njd7bkrR//37FxMT4a3lXZeCrYszx2muvafjw4brvvvs0aNAgvfHGG9q6dauSk5NVVlam7du366OPPvL3MltdUlKSdu/ereTkZJ/9S5YskSQ9+OCD/lhWm0tMTNShQ4fUs2dPSVJxcbG6d+/uHS8vL7/kL7WOYuDAgSopKdH48eMvO26z2Trs22/DwsL07rvvas2aNUpNTVVjY6O/l+QX3bt31/z58zVv3jxt2bLF38tpE6NGjVJQUJDq6upUVlamPn36eMf+8pe/dMgXyU6aNElTpkzR+PHjVVhYqOeee07PPvusTp48KZvNph/96Ed65JFH/L3MyyJQriIuLk5//OMftWjRIm3YsEGWZWnnzp2qqKjQ8OHD9fnnn2vQoEH+Xmar+6d/+ietXr1akydPvmRsyZIlampq0vLly/2wsrY1c+ZMn19O3/7LS5I2btzYYd/FM2fOHJ09e/aK47169dLvf//7m7iimy8rK0v33nuvSkpKlJCQ4O/ltJmEhAQFBgZecdxms+mBBx64iSu6OebNm+dzOywszOf2hg0bOuQ7m1555RWFhoaquLhY06dP1wsvvKD+/fvrueee0zfffKNx48Zp4cKF/l7mZfFtxgAAwDi8BgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBcBlbd26VTabTTU1NTf92ImJiXrrrbe8t202m9avX9/qjwvAXAQK0IkVFxcrMDBQGRkZl4wNGzZMVVVVPh9Wdz2OHTsmm83m3aKiojR69Gj98Y9/bK1lX9PKlSsVERFxyf5du3ZpxowZN20dAFqOQAE6sRUrVmj27Nnatm2bKisrfcZCQkLkcrmu+MmqjY2NampquuJjb9myRVVVVfr000915swZpaen++VqzLdFR0era9eufl0DgOtDoACd1JkzZ7R27VrNnDlTGRkZWrlypc/4d5/iuXhV4r/+67+UkpIiu92u8vLyKz5+VFSUXC6XBg0apNdff13V1dXasWOHJOk3v/mN7rrrLtntdiUmJuqNN9647nVf7qmn0tJS2Ww2HTt2TFu3btUTTzyh2tpa71Wc+fPnS7r0KZ7y8nKNHz9eYWFhcjgcevTRR1VdXe0dnz9/vu6++269//77SkxMlNPpVFZWlk6fPn3d6wXQMgQK0EmtW7dOSUlJuvPOO/XYY4/pnXfeuebH2X/zzTd67bXX9O///u/N+g6P0NBQSVJDQ4NKSkr06KOPKisrS/v27dP8+fP18ssvXxJILTVs2DC99dZbcjgcqqqqUlVVlZ599tlL5jU1NWn8+PE6deqUioqKtHnzZn399deaMGGCz7wjR45o/fr1KigoUEFBgYqKirRo0aJWWSuAK+Oj7oFOasWKFXrsscckSWPGjFFtba2Kioo0cuTIK97n/Pnzevvtt9W/f//rPk5NTY0WLlyosLAw3XPPPcrJydGoUaP08ssvS5J69+6tAwcO6Cc/+Ykef/zxGzklSX9/asrpdMpms8nlcl1xXmFhofbt26ejR48qPj5ekvTee+/prrvu0q5duzR48GBJfw+ZlStXKjw8XJI0efJkFRYW6kc/+tENrxXAlXEFBeiEysrKtHPnTk2cOFGSFBQUpAkTJmjFihVXvV9ISIj69et3XccYNmyYwsLCdOutt+pPf/qT1q5dq9jYWB08eFDDhw/3mTt8+HDvN63eLAcPHlR8fLw3TiQpJSVFEREROnjwoHdfYmKiN06kv3/z8/Hjx2/aOoHOiisoQCe0YsUKXbhwQXFxcd59lmXJbrdryZIlV3znTmho6BVfNPtda9euVUpKiqKioi77jpqWCgj4+7+rvv101Pnz51vt8b8rODjY57bNZrvqi4MBtA6uoACdzIULF/Tee+/pjTfeUGlpqXf705/+pLi4OK1evbpVjhMfH6+ePXteEifJycn6/PPPffZ9/vnn6t2791W/Zfei6OhoSVJVVZV3X2lpqc+ckJCQa16NSU5OVkVFhSoqKrz7Dhw4oJqaGqWkpFxzHQDaFoECdDIFBQX6v//7P02bNk19+vTx2TIzM6/5NM+NeuaZZ1RYWKiFCxfqz3/+s959910tWbLksi9kvZxevXopPj5e8+fP16FDh/TJJ59c8i6gxMREnTlzRoWFhfrf//1fffPNN5c8Tmpqqvr27atJkyZpz5492rlzp6ZMmaL77rtPgwYNapVzBdByBArQyaxYsUKpqamXfRonMzNTu3fv1t69e9vs+P/4j/+odevWac2aNerTp4/mzp2rBQsWXPcLZIODg7V69Wp99dVX6tevn1577TW9+uqrPnOGDRumJ598UhMmTFB0dLQWL158yePYbDZ9/PHHuvXWWzVixAilpqbqjjvu0Nq1a1vjNAHcIJt1rfcVAgAA3GRcQQEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCc/wf539AkZk0CmgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dane7 = dane['Air Pollution'].value_counts().plot(kind = 'bar')\n",
"dane7"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85924b6b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}