upd51
This commit is contained in:
parent
c3c751076e
commit
2d8d1d999e
21
script5_1.py
21
script5_1.py
@ -7,27 +7,28 @@ from tensorflow.keras.layers import Dense
|
|||||||
from tensorflow.keras.optimizers import Adam
|
from tensorflow.keras.optimizers import Adam
|
||||||
|
|
||||||
# Load the dataset from the CSV file
|
# Load the dataset from the CSV file
|
||||||
data = pd.read_csv('data.csv', on_bad_lines='skip', engine='python')
|
data = pd.read_csv('data.csv')
|
||||||
|
|
||||||
|
|
||||||
|
# Drop a specific row
|
||||||
|
data = data.drop(index=5059)
|
||||||
|
|
||||||
# Prepare the data
|
# Prepare the data
|
||||||
X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer', 'year']]
|
X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer']]
|
||||||
y = data['Rating']
|
y = data['Rating']
|
||||||
|
|
||||||
# Preprocess the data
|
# Preprocess the data
|
||||||
# Convert the categorical columns into numerical representations
|
# Convert the categorical columns into numerical representations
|
||||||
mlb_genres = MultiLabelBinarizer()
|
mlb_genres = MultiLabelBinarizer()
|
||||||
X_genres = mlb_genres.fit_transform(data['Generes'])
|
X_genres = pd.DataFrame(mlb_genres.fit_transform(data['Generes']), columns=mlb_genres.classes_)
|
||||||
X.loc[:, 'Generes'] = X_genres.tolist()
|
|
||||||
|
|
||||||
mlb_keywords = MultiLabelBinarizer()
|
mlb_keywords = MultiLabelBinarizer()
|
||||||
X_keywords = mlb_keywords.fit_transform(data['Plot Kyeword'])
|
X_keywords = pd.DataFrame(mlb_keywords.fit_transform(data['Plot Kyeword']), columns=mlb_keywords.classes_)
|
||||||
X.loc[:, 'Plot Kyeword'] = X_keywords.tolist()
|
|
||||||
|
|
||||||
mlb_casts = MultiLabelBinarizer()
|
mlb_casts = MultiLabelBinarizer()
|
||||||
X_casts = mlb_casts.fit_transform(data['Top 5 Casts'].astype(str))
|
X_casts = pd.DataFrame(mlb_casts.fit_transform(data['Top 5 Casts'].astype(str)), columns=mlb_casts.classes_)
|
||||||
X.loc[:, 'Top 5 Casts'] = X_casts.tolist()
|
|
||||||
|
# Concatenate the transformed columns with the remaining columns
|
||||||
|
X = pd.concat([X, X_genres, X_keywords, X_casts], axis=1)
|
||||||
|
|
||||||
# Split the data into training and testing sets
|
# Split the data into training and testing sets
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||||
@ -37,7 +38,7 @@ model = Sequential()
|
|||||||
model.add(Dense(32, activation='relu', input_dim=X.shape[1]))
|
model.add(Dense(32, activation='relu', input_dim=X.shape[1]))
|
||||||
model.add(Dense(16, activation='relu'))
|
model.add(Dense(16, activation='relu'))
|
||||||
model.add(Dense(1))
|
model.add(Dense(1))
|
||||||
|
|
||||||
# Compile the model
|
# Compile the model
|
||||||
model.compile(optimizer=Adam(), loss='mse')
|
model.compile(optimizer=Adam(), loss='mse')
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user