Compare commits
2 Commits
2425f9e0ee
...
7fa6bb231c
Author | SHA1 | Date | |
---|---|---|---|
7fa6bb231c | |||
87989245b9 |
BIN
ml/assets/fonts/arial.ttf
Normal file
BIN
ml/assets/fonts/arial.ttf
Normal file
Binary file not shown.
BIN
ml/assets/weights/yolov8-plate.pt
Normal file
BIN
ml/assets/weights/yolov8-plate.pt
Normal file
Binary file not shown.
69
ml/element_detection.py
Normal file
69
ml/element_detection.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
import os
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
FACES_PATH = os.path.join(DIR_PATH, "assets/weights/yolov8n-face.pt")
|
||||||
|
PLATES_PATH = os.path.join(DIR_PATH, "assets/weights/yolov8-plate.pt")
|
||||||
|
FACES_MODEL = YOLO(FACES_PATH)
|
||||||
|
PLATES_MODEL = YOLO(PLATES_PATH)
|
||||||
|
CONF_THRESH = 0.3
|
||||||
|
IOU_THRESH = 0.5
|
||||||
|
|
||||||
|
|
||||||
|
class BoundBox:
|
||||||
|
def __init__(self, x1, y1, x2, y2):
|
||||||
|
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
|
||||||
|
self.selected = True
|
||||||
|
|
||||||
|
def select(self):
|
||||||
|
self.selected = True
|
||||||
|
|
||||||
|
def unselect(self):
|
||||||
|
self.selected = False
|
||||||
|
|
||||||
|
def get_params(self) -> Tuple[int, int, int, int]:
|
||||||
|
return self.x1, self.y1, self.x2, self.y2
|
||||||
|
|
||||||
|
|
||||||
|
def detect(image_path: str) -> List[BoundBox]:
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
faces = FACES_MODEL.predict(
|
||||||
|
source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device
|
||||||
|
)
|
||||||
|
faces = faces[0].cpu().numpy().boxes
|
||||||
|
plates = PLATES_MODEL.predict(
|
||||||
|
source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device
|
||||||
|
)
|
||||||
|
plates = plates[0].cpu().numpy().boxes
|
||||||
|
bounding_boxes = []
|
||||||
|
for boxes in [faces, plates]:
|
||||||
|
for box in boxes:
|
||||||
|
xyxyn = box.xyxy[0]
|
||||||
|
x1 = int(xyxyn[0])
|
||||||
|
y1 = int(xyxyn[1])
|
||||||
|
x2 = int(xyxyn[2])
|
||||||
|
y2 = int(xyxyn[3])
|
||||||
|
bounding_boxes.append(BoundBox(x1, y1, x2, y2))
|
||||||
|
return bounding_boxes
|
||||||
|
|
||||||
|
|
||||||
|
def show_image_with_boxes(
|
||||||
|
in_image_path: str, bounding_boxes: List[BoundBox], out_image_path: str = None
|
||||||
|
):
|
||||||
|
img = Image.open(in_image_path)
|
||||||
|
draw = ImageDraw.Draw(img)
|
||||||
|
font_path = DIR_PATH + "/assets/fonts/arial.ttf"
|
||||||
|
font = ImageFont.truetype(font_path, 25)
|
||||||
|
for i, box in enumerate(bounding_boxes):
|
||||||
|
draw.rectangle(box.get_params(), outline="red", width=2, fill=None)
|
||||||
|
draw.text((box.x1 + 5, box.y1 + 5), str(i+1), fill="red", font=font)
|
||||||
|
if not out_image_path:
|
||||||
|
out_image_path = (
|
||||||
|
in_image_path.split(".")[0] + "_out." + in_image_path.split(".")[1]
|
||||||
|
)
|
||||||
|
img.save(out_image_path)
|
@ -1,29 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from ultralytics import YOLO
|
|
||||||
|
|
||||||
WEIGHTS_PATH = "assets/weights/yolov8n-face.pt"
|
|
||||||
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
|
|
||||||
WEIGHTS_PATH = os.path.join(DIR_PATH, WEIGHTS_PATH)
|
|
||||||
MODEL = YOLO(WEIGHTS_PATH)
|
|
||||||
CONF_THRESH = 0.01
|
|
||||||
IOU_THRESH = 0.5
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: currently detect_faces accepts a image path, but it can be changed to accept images in memory
|
|
||||||
def detect_faces(image_path: str) -> List[tuple[int, int, int, int]]:
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
results = MODEL.predict(source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device)
|
|
||||||
face_boxes = []
|
|
||||||
result = results[0].cpu().numpy()
|
|
||||||
for box in result.boxes:
|
|
||||||
xyxyn = box.xyxy[0]
|
|
||||||
x1 = int(xyxyn[0])
|
|
||||||
y1 = int(xyxyn[1])
|
|
||||||
x2 = int(xyxyn[2])
|
|
||||||
y2 = int(xyxyn[3])
|
|
||||||
face_boxes.append((x1, y1, x2, y2))
|
|
||||||
return face_boxes
|
|
Loading…
Reference in New Issue
Block a user