BlurMe/ml/element_detection.py

57 lines
1.7 KiB
Python

import os
from typing import List, Tuple
import torch
from ultralytics import YOLO
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
FACES_PATH = os.path.join(DIR_PATH, "assets/weights/yolov8n-face.pt")
PLATES_PATH = os.path.join(DIR_PATH, "assets/weights/yolov8-plate.pt")
FACES_MODEL = YOLO(FACES_PATH)
PLATES_MODEL = YOLO(PLATES_PATH)
CONF_THRESH = 0.3
IOU_THRESH = 0.5
class BoundBox:
def __init__(self, x1, y1, x2, y2, object=None):
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
self.selected = True
if object not in ["face", "plate"]:
raise ValueError("object must be either 'face' or 'plate'")
self.object = object
def select(self):
self.selected = True
def unselect(self):
self.selected = False
def get_params(self) -> Tuple[int, int, int, int]:
return self.x1, self.y1, self.x2, self.y2
def detect(image_path: str) -> List[BoundBox]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
faces = FACES_MODEL.predict(
source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device
)
faces = faces[0].cpu().numpy().boxes
plates = PLATES_MODEL.predict(
source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device
)
plates = plates[0].cpu().numpy().boxes
bounding_boxes = []
for boxes, tag in zip([faces, plates], ["face", "plate"]):
for box in boxes:
xyxyn = box.xyxy[0]
x1 = int(xyxyn[0])
y1 = int(xyxyn[1])
x2 = int(xyxyn[2])
y2 = int(xyxyn[3])
bounding_boxes.append(BoundBox(x1, y1, x2, y2, tag))
return bounding_boxes