BlurMe/ml/face_detection.py

30 lines
930 B
Python

import os
from typing import List
import torch
from ultralytics import YOLO
WEIGHTS_PATH = "assets/weights/yolov8n-face.pt"
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
WEIGHTS_PATH = os.path.join(DIR_PATH, WEIGHTS_PATH)
MODEL = YOLO(WEIGHTS_PATH)
CONF_THRESH = 0.01
IOU_THRESH = 0.5
# TODO: currently detect_faces accepts a image path, but it can be changed to accept images in memory
def detect_faces(image_path: str) -> List[tuple[int, int, int, int]]:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
results = MODEL.predict(source=image_path, conf=CONF_THRESH, iou=IOU_THRESH, device=device)
face_boxes = []
result = results[0].cpu().numpy()
for box in result.boxes:
xyxyn = box.xyxy[0]
x1 = int(xyxyn[0])
y1 = int(xyxyn[1])
x2 = int(xyxyn[2])
y2 = int(xyxyn[3])
face_boxes.append((x1, y1, x2, y2))
return face_boxes