forked from bfijalkowski/KWT-2024
664 lines
18 KiB
Plaintext
664 lines
18 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "coastal-lincoln",
|
|
"metadata": {},
|
|
"source": [
|
|
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
|
|
"<div class=\"alert alert-block alert-info\">\n",
|
|
"<h1> Komputerowe wspomaganie tłumaczenia </h1>\n",
|
|
"<h2> 3. <i>Terminologia</i> [laboratoria]</h2> \n",
|
|
"<h3>Rafał Jaworski (2021)</h3>\n",
|
|
"</div>\n",
|
|
"\n",
|
|
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aggregate-listing",
|
|
"metadata": {},
|
|
"source": [
|
|
"Na dzisiejszych zajęciach zajmiemy się bliżej słownikami używanymi do wspomagania tłumaczenia. Oczywiście na rynku dostępnych jest bardzo wiele słowników w formacie elektronicznym. Wiele z nich jest gotowych do użycia w SDL Trados, memoQ i innych narzędziach CAT. Zawierają one setki tysięcy lub miliony haseł i oferują natychmiastową pomoc tłumaczowi."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "israeli-excuse",
|
|
"metadata": {},
|
|
"source": [
|
|
"Problem jednak w tym, iż często nie zawierają odpowiedniej terminologii specjalistycznej - używanej przez klienta zamawiającego tłumaczenie. Terminy specjalistyczne są bardzo częste w tekstach tłumaczonych ze względu na następujące zjawiska:\n",
|
|
"- Teksty o tematyce ogólnej są tłumaczone dość rzadko (nikt nie tłumaczy pocztówek z pozdrowieniami z wakacji...)\n",
|
|
"- Te same słowa mogą mieć zarówno znaczenie ogólne, jak i bardzo specjalistyczne (np. \"dziedziczenie\" w kontekście prawnym lub informatycznym)\n",
|
|
"- Klient używa nazw lub słów wymyślonych przez siebie, np. na potrzeby marketingowe."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "reflected-enforcement",
|
|
"metadata": {},
|
|
"source": [
|
|
"Nietrywialnymi zadaniami stają się: odnalezienie terminu specjalistycznego w tekście źródłowym oraz podanie prawidłowego tłumaczenia tego terminu na język docelowy"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "statutory-florist",
|
|
"metadata": {},
|
|
"source": [
|
|
"Brzmi prosto? Spróbujmy wykonać ręcznie tę drugą operację."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "danish-anchor",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 1: Podaj tłumaczenie terminu \"prowadnice szaf metalowych\" na język angielski. Opisz, z jakich narzędzi skorzystałaś/eś."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "diverse-sunglasses",
|
|
"metadata": {},
|
|
"source": [
|
|
"Odpowiedź: metal cabinet guides lub metal cabinet slides. Skorzystalem z dwoch slownikow oraz duzego modelu jezykowego."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "limited-waterproof",
|
|
"metadata": {},
|
|
"source": [
|
|
"W dalszych ćwiczeniach skupimy się jednak na odszukaniu terminu specjalistycznego w tekście. W tym celu będą potrzebne dwie operacje:\n",
|
|
"1. Przygotowanie słownika specjalistycznego.\n",
|
|
"2. Detekcja terminologii przy użyciu przygotowanego słownika specjalistycznego."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "literary-blues",
|
|
"metadata": {},
|
|
"source": [
|
|
"Zajmijmy się najpierw krokiem nr 2 (gdyż jest prostszy). Rozważmy następujący tekst:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 102,
|
|
"id": "loving-prince",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \" For all Java programmers:\"\n",
|
|
"text += \" This section explains how to compile and run a Swing application from the command line.\"\n",
|
|
"text += \" For information on compiling and running a Swing application using NetBeans IDE,\"\n",
|
|
"text += \" see Running Tutorial Examples in NetBeans IDE. The compilation instructions work for all Swing programs\"\n",
|
|
"text += \" — applets, as well as applications. Here are the steps you need to follow:\"\n",
|
|
"text += \" Install the latest release of the Java SE platform, if you haven't already done so.\"\n",
|
|
"text += \" Create a program that uses Swing components. Compile the program. Run the program.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "extreme-cycling",
|
|
"metadata": {},
|
|
"source": [
|
|
"Załóżmy, że posiadamy następujący słownik:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 103,
|
|
"id": "bound-auction",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dictionary = ['program', 'application', 'applet', 'compile']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "other-trinidad",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 2: Napisz program, który wypisze pozycje wszystkich wystąpień poszczególnych terminów specjalistycznych. Dla każdego terminu należy wypisać listę par (pozycja_startowa, pozycja końcowa)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 104,
|
|
"id": "cognitive-cedar",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import re\n",
|
|
"\n",
|
|
"def terminology_lookup(txt, labels):\n",
|
|
" results = []\n",
|
|
"\n",
|
|
" for label in labels:\n",
|
|
" results.append((\n",
|
|
" label,\n",
|
|
" [(m.start(), m.end() - 1) for m in re.finditer(label, txt)]\n",
|
|
" ))\n",
|
|
"\n",
|
|
" return results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 105,
|
|
"id": "7cc3ad1f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[('program', [(14, 20), (291, 297), (468, 474), (516, 522), (533, 539)]),\n",
|
|
" ('application', [(80, 90), (164, 174), (322, 332)]),\n",
|
|
" ('applet', [(302, 307)]),\n",
|
|
" ('compile', [(56, 62)])]"
|
|
]
|
|
},
|
|
"execution_count": 105,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"terminology_lookup(text, dictionary)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "interior-things",
|
|
"metadata": {},
|
|
"source": [
|
|
"Zwykłe wyszukiwanie w tekście ma pewne wady. Na przykład, gdy szukaliśmy słowa \"program\", złapaliśmy przypadkiem słowo \"programmer\". Złapaliśmy także słowo \"programs\", co jest poprawne, ale niepoprawnie podaliśmy jego pozycję w tekście."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aggressive-plane",
|
|
"metadata": {},
|
|
"source": [
|
|
"Żeby poradzić sobie z tymi problemami, musimy wykorzystać techniki przetwarzania języka naturalnego. Wypróbujmy pakiet spaCy:\n",
|
|
"\n",
|
|
"`pip3 install spacy`\n",
|
|
"\n",
|
|
"oraz\n",
|
|
"\n",
|
|
"`python3 -m spacy download en_core_web_sm`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 106,
|
|
"id": "tribal-attention",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 0\n",
|
|
"For for 1\n",
|
|
"all all 5\n",
|
|
"Java Java 9\n",
|
|
"programmers programmer 14\n",
|
|
": : 25\n",
|
|
"This this 27\n",
|
|
"section section 32\n",
|
|
"explains explain 40\n",
|
|
"how how 49\n",
|
|
"to to 53\n",
|
|
"compile compile 56\n",
|
|
"and and 64\n",
|
|
"run run 68\n",
|
|
"a a 72\n",
|
|
"Swing swing 74\n",
|
|
"application application 80\n",
|
|
"from from 92\n",
|
|
"the the 97\n",
|
|
"command command 101\n",
|
|
"line line 109\n",
|
|
". . 113\n",
|
|
"For for 115\n",
|
|
"information information 119\n",
|
|
"on on 131\n",
|
|
"compiling compile 134\n",
|
|
"and and 144\n",
|
|
"running run 148\n",
|
|
"a a 156\n",
|
|
"Swing swing 158\n",
|
|
"application application 164\n",
|
|
"using use 176\n",
|
|
"NetBeans NetBeans 182\n",
|
|
"IDE IDE 191\n",
|
|
", , 194\n",
|
|
"see see 196\n",
|
|
"Running run 200\n",
|
|
"Tutorial Tutorial 208\n",
|
|
"Examples Examples 217\n",
|
|
"in in 226\n",
|
|
"NetBeans NetBeans 229\n",
|
|
"IDE IDE 238\n",
|
|
". . 241\n",
|
|
"The the 243\n",
|
|
"compilation compilation 247\n",
|
|
"instructions instruction 259\n",
|
|
"work work 272\n",
|
|
"for for 277\n",
|
|
"all all 281\n",
|
|
"Swing Swing 285\n",
|
|
"programs program 291\n",
|
|
"— — 300\n",
|
|
"applets applet 302\n",
|
|
", , 309\n",
|
|
"as as 311\n",
|
|
"well well 314\n",
|
|
"as as 319\n",
|
|
"applications application 322\n",
|
|
". . 334\n",
|
|
"Here here 336\n",
|
|
"are be 341\n",
|
|
"the the 345\n",
|
|
"steps step 349\n",
|
|
"you you 355\n",
|
|
"need need 359\n",
|
|
"to to 364\n",
|
|
"follow follow 367\n",
|
|
": : 373\n",
|
|
"Install install 375\n",
|
|
"the the 383\n",
|
|
"latest late 387\n",
|
|
"release release 394\n",
|
|
"of of 402\n",
|
|
"the the 405\n",
|
|
"Java Java 409\n",
|
|
"SE SE 414\n",
|
|
"platform platform 417\n",
|
|
", , 425\n",
|
|
"if if 427\n",
|
|
"you you 430\n",
|
|
"have have 434\n",
|
|
"n't not 438\n",
|
|
"already already 442\n",
|
|
"done do 450\n",
|
|
"so so 455\n",
|
|
". . 457\n",
|
|
"Create create 459\n",
|
|
"a a 466\n",
|
|
"program program 468\n",
|
|
"that that 476\n",
|
|
"uses use 481\n",
|
|
"Swing swing 486\n",
|
|
"components component 492\n",
|
|
". . 502\n",
|
|
"Compile compile 504\n",
|
|
"the the 512\n",
|
|
"program program 516\n",
|
|
". . 523\n",
|
|
"Run run 525\n",
|
|
"the the 529\n",
|
|
"program program 533\n",
|
|
". . 540\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import spacy\n",
|
|
"nlp = spacy.load(\"en_core_web_sm\")\n",
|
|
"\n",
|
|
"doc = nlp(text)\n",
|
|
"\n",
|
|
"for token in doc:\n",
|
|
" print(token, token.lemma_, token.idx)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "regional-craft",
|
|
"metadata": {},
|
|
"source": [
|
|
"Sukces! Nastąpił podział tekstu na słowa (tokenizacja) oraz sprowadzenie do formy podstawowej każdego słowa (lematyzacja)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "toxic-subsection",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 3: Zmodyfikuj program z ćwiczenia 2 tak, aby zwracał również odmienione słowa. Na przykład, dla słowa \"program\" powinien znaleźć również \"programs\", ustawiając pozycje w tekście odpowiednio dla słowa \"programs\". Wykorzystaj właściwość idx tokenu."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 107,
|
|
"id": "surgical-demonstration",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import spacy\n",
|
|
"nlp = spacy.load(\"en_core_web_sm\")\n",
|
|
"\n",
|
|
"\n",
|
|
"def terminology_lookup(txt, labels):\n",
|
|
" result = {};\n",
|
|
" doc = nlp(txt)\n",
|
|
"\n",
|
|
" for token in doc:\n",
|
|
" if token.lemma_ in labels: \n",
|
|
" if token.lemma_ not in result:\n",
|
|
" result[token.lemma_] = []\n",
|
|
" result[token.lemma_].append((token.idx, token.idx + len(token)))\n",
|
|
"\n",
|
|
" return result"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 108,
|
|
"id": "4772c1b1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'compile': [(56, 63), (134, 143), (504, 511)],\n",
|
|
" 'application': [(80, 91), (164, 175), (322, 334)],\n",
|
|
" 'program': [(291, 299), (468, 475), (516, 523), (533, 540)],\n",
|
|
" 'applet': [(302, 309)]}"
|
|
]
|
|
},
|
|
"execution_count": 108,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"terminology_lookup(text, dictionary)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "straight-letter",
|
|
"metadata": {},
|
|
"source": [
|
|
"Teraz czas zająć się problemem przygotowania słownika specjalistycznego. W tym celu napiszemy nasz własny ekstraktor terminologii. Wejściem do ekstraktora będzie tekst zawierający specjalistyczną terminologię. Wyjściem - lista terminów."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "nearby-frontier",
|
|
"metadata": {},
|
|
"source": [
|
|
"Przyjmijmy następujące podejście - terminami specjalistycznymi będą najcześćiej występujące rzeczowniki w tekście. Wykonajmy krok pierwszy:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "harmful-lightning",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 4: Wypisz wszystkie rzeczowniki z tekstu. Wykorzystaj możliwości spaCy."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 109,
|
|
"id": "superb-butterfly",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def get_nouns(text):\n",
|
|
" doc = nlp(text)\n",
|
|
" return [token.lemma_ for token in doc if token.pos_ == 'NOUN']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 110,
|
|
"id": "3c916a3e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['programmer',\n",
|
|
" 'section',\n",
|
|
" 'swing',\n",
|
|
" 'application',\n",
|
|
" 'command',\n",
|
|
" 'line',\n",
|
|
" 'information',\n",
|
|
" 'swing',\n",
|
|
" 'application',\n",
|
|
" 'compilation',\n",
|
|
" 'instruction',\n",
|
|
" 'program',\n",
|
|
" 'applet',\n",
|
|
" 'application',\n",
|
|
" 'step',\n",
|
|
" 'release',\n",
|
|
" 'platform',\n",
|
|
" 'program',\n",
|
|
" 'swing',\n",
|
|
" 'component',\n",
|
|
" 'program',\n",
|
|
" 'program']"
|
|
]
|
|
},
|
|
"execution_count": 110,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"get_nouns(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "musical-creator",
|
|
"metadata": {},
|
|
"source": [
|
|
"Teraz czas na podliczenie wystąpień poszczególnych rzeczowników. Uwaga - różne formy tego samego słowa zliczamy razem jako wystąpienia tego słowa (np. \"program\" i \"programs\"). Najwygodniejszą metodą podliczania jest zastosowanie tzw. tally (po polsku \"zestawienie\"). Jest to słownik, którego kluczem jest słowo w formie podstawowej, a wartością liczba wystąpień tego słowa, wliczając słowa odmienione. Przykład gotowego tally:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 111,
|
|
"id": "acting-tolerance",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tally = {\"program\" : 4, \"component\" : 1}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "vanilla-estimate",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 5: Napisz program do ekstrakcji terminologii z tekstu według powyższych wytycznych."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 112,
|
|
"id": "eight-redhead",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def count_words(words):\n",
|
|
" word_count = {}\n",
|
|
" for word in words:\n",
|
|
" if word in word_count:\n",
|
|
" word_count[word] += 1\n",
|
|
" else:\n",
|
|
" word_count[word] = 1\n",
|
|
" return word_count\n",
|
|
"\n",
|
|
"def extract_terms(text):\n",
|
|
" return count_words(get_nouns(text))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 113,
|
|
"id": "374550d8",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'programmer': 1,\n",
|
|
" 'section': 1,\n",
|
|
" 'swing': 3,\n",
|
|
" 'application': 3,\n",
|
|
" 'command': 1,\n",
|
|
" 'line': 1,\n",
|
|
" 'information': 1,\n",
|
|
" 'compilation': 1,\n",
|
|
" 'instruction': 1,\n",
|
|
" 'program': 4,\n",
|
|
" 'applet': 1,\n",
|
|
" 'step': 1,\n",
|
|
" 'release': 1,\n",
|
|
" 'platform': 1,\n",
|
|
" 'component': 1}"
|
|
]
|
|
},
|
|
"execution_count": 113,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"extract_terms(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "loaded-smell",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ćwiczenie 6: Rozszerz powyższy program o ekstrację czasowników i przymiotników."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 114,
|
|
"id": "monetary-mambo",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def get_verbs(text):\n",
|
|
" doc = nlp(text)\n",
|
|
" return [token.lemma_ for token in doc if token.pos_ == 'VERB']\n",
|
|
"\n",
|
|
"def get_adjectives(text):\n",
|
|
" doc = nlp(text)\n",
|
|
" return [token.lemma_ for token in doc if token.pos_ == 'ADJ']\n",
|
|
"\n",
|
|
"def extract_terms(text):\n",
|
|
" return {\n",
|
|
" \"nouns\": get_nouns(text),\n",
|
|
" \"verbs\": get_verbs(text),\n",
|
|
" \"adjectives\": get_adjectives(text)\n",
|
|
" }"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 115,
|
|
"id": "95494ac9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'nouns': ['programmer',\n",
|
|
" 'section',\n",
|
|
" 'swing',\n",
|
|
" 'application',\n",
|
|
" 'command',\n",
|
|
" 'line',\n",
|
|
" 'information',\n",
|
|
" 'swing',\n",
|
|
" 'application',\n",
|
|
" 'compilation',\n",
|
|
" 'instruction',\n",
|
|
" 'program',\n",
|
|
" 'applet',\n",
|
|
" 'application',\n",
|
|
" 'step',\n",
|
|
" 'release',\n",
|
|
" 'platform',\n",
|
|
" 'program',\n",
|
|
" 'swing',\n",
|
|
" 'component',\n",
|
|
" 'program',\n",
|
|
" 'program'],\n",
|
|
" 'verbs': ['explain',\n",
|
|
" 'compile',\n",
|
|
" 'run',\n",
|
|
" 'compile',\n",
|
|
" 'run',\n",
|
|
" 'use',\n",
|
|
" 'see',\n",
|
|
" 'run',\n",
|
|
" 'work',\n",
|
|
" 'need',\n",
|
|
" 'follow',\n",
|
|
" 'install',\n",
|
|
" 'do',\n",
|
|
" 'create',\n",
|
|
" 'use',\n",
|
|
" 'compile',\n",
|
|
" 'run'],\n",
|
|
" 'adjectives': ['late']}"
|
|
]
|
|
},
|
|
"execution_count": 115,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"extract_terms(text)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"author": "Rafał Jaworski",
|
|
"email": "rjawor@amu.edu.pl",
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"lang": "pl",
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.9"
|
|
},
|
|
"subtitle": "3. Terminologia",
|
|
"title": "Komputerowe wspomaganie tłumaczenia",
|
|
"year": "2021"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|