forked from filipg/aitech-eks-pub
70 lines
1.6 KiB
Plaintext
70 lines
1.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def word_to_index(word):\n",
|
|
" vec = np.zeros(len(vocabulary))\n",
|
|
" if word in vocabulary:\n",
|
|
" idx = vocabulary.index(word)\n",
|
|
" vec[idx] = 1\n",
|
|
" else:\n",
|
|
" vec[-1] = 1\n",
|
|
" return vec"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def tf(document):\n",
|
|
" document_vector = None\n",
|
|
" for word in document:\n",
|
|
" if document_vector is None:\n",
|
|
" document_vector = word_to_index(word)\n",
|
|
" else:\n",
|
|
" document_vector += word_to_index(word)\n",
|
|
" return document_vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def similarity(query, document):\n",
|
|
" numerator = np.sum(query * document)\n",
|
|
" denominator = np.sqrt(np.sum(query*query)) * np.sqrt(np.sum(document*document)) \n",
|
|
" return numerator / denominator"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|