workshops_recommender_systems/P4. Matrix Factorization.ipynb
2020-05-21 13:42:50 +02:00

82 KiB

Self made SVD

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random

train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None)
test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)
train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)
# Done similarly to https://github.com/albertauyeung/matrix-factorization-in-python
from tqdm import tqdm

class SVD():
    
    def __init__(self, train_ui, learning_rate, regularization, nb_factors, iterations):
        self.train_ui=train_ui
        self.uir=list(zip(*[train_ui.nonzero()[0],train_ui.nonzero()[1], train_ui.data]))
        
        self.learning_rate=learning_rate
        self.regularization=regularization
        self.iterations=iterations
        self.nb_users, self.nb_items=train_ui.shape
        self.nb_ratings=train_ui.nnz
        self.nb_factors=nb_factors
        
        self.Pu=np.random.normal(loc=0, scale=1./self.nb_factors, size=(self.nb_users, self.nb_factors))
        self.Qi=np.random.normal(loc=0, scale=1./self.nb_factors, size=(self.nb_items, self.nb_factors))

    def train(self, test_ui=None):
        if test_ui!=None:
            self.test_uir=list(zip(*[test_ui.nonzero()[0],test_ui.nonzero()[1], test_ui.data]))
            
        self.learning_process=[]
        pbar = tqdm(range(self.iterations))
        for i in pbar:
            pbar.set_description(f'Epoch {i} RMSE: {self.learning_process[-1][1] if i>0 else 0}. Training epoch {i+1}...')
            np.random.shuffle(self.uir)
            self.sgd(self.uir)
            if test_ui==None:
                self.learning_process.append([i+1, self.RMSE_total(self.uir)])
            else:
                self.learning_process.append([i+1, self.RMSE_total(self.uir), self.RMSE_total(self.test_uir)])
    
    def sgd(self, uir):
        
        for u, i, score in uir:
            # Computer prediction and error
            prediction = self.get_rating(u,i)
            e = (score - prediction)
            
            # Update user and item latent feature matrices
            Pu_update=self.learning_rate * (e * self.Qi[i] - self.regularization * self.Pu[u])
            Qi_update=self.learning_rate * (e * self.Pu[u] - self.regularization * self.Qi[i])
            
            self.Pu[u] += Pu_update
            self.Qi[i] += Qi_update
        
    def get_rating(self, u, i):
        prediction = self.Pu[u].dot(self.Qi[i].T)
        return prediction
    
    def RMSE_total(self, uir):
        RMSE=0
        for u,i, score in uir:
            prediction = self.get_rating(u,i)
            RMSE+=(score - prediction)**2
        return np.sqrt(RMSE/len(uir))
    
    def estimations(self):
        self.estimations=\
        np.dot(self.Pu,self.Qi.T)

    def recommend(self, user_code_id, item_code_id, topK=10):
        
        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):
            
            user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result=[]
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid]+list(chain(*item_scores[:topK])))
        return result
    
    def estimate(self, user_code_id, item_code_id, test_ui):
        result=[]
        for user, item in zip(*test_ui.nonzero()):
            result.append([user_code_id[user], item_code_id[item], 
                           self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])
        return result
model=SVD(train_ui, learning_rate=0.005, regularization=0.02, nb_factors=100, iterations=40)
model.train(test_ui)
Epoch 39 RMSE: 0.7493723517098142. Training epoch 40...: 100%|██████████| 40/40 [02:06<00:00,  3.16s/it]
import matplotlib.pyplot as plt

df=pd.DataFrame(model.learning_process).iloc[:,:2]
df.columns=['epoch', 'train_RMSE']
plt.plot('epoch', 'train_RMSE', data=df, color='blue')
plt.legend()
<matplotlib.legend.Legend at 0x7f39a01f7c50>
import matplotlib.pyplot as plt

df=pd.DataFrame(model.learning_process[10:], columns=['epoch', 'train_RMSE', 'test_RMSE'])
plt.plot('epoch', 'train_RMSE', data=df, color='blue')
plt.plot('epoch', 'test_RMSE', data=df, color='yellow', linestyle='dashed')
plt.legend()
<matplotlib.legend.Legend at 0x7f399be5f518>

Saving and evaluating recommendations

model.estimations()

top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_SVD_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_SVD_estimations.csv', index=False, header=False)
import evaluation_measures as ev

estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_SVD_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_SVD_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 4912.25it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.9144 0.718047 0.103393 0.043404 0.05292 0.070119 0.093455 0.074901 0.107441 0.05077 0.200719 0.518433 0.4772 0.866384 0.145743 3.860721 0.972299
import imp
imp.reload(ev)

import evaluation_measures as ev
dir_path="Recommendations generated/ml-100k/"
super_reactions=[4,5]
test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 4816.30it/s]
943it [00:00, 4733.95it/s]
943it [00:00, 4623.19it/s]
943it [00:00, 5099.59it/s]
943it [00:00, 4968.40it/s]
943it [00:00, 5056.01it/s]
943it [00:00, 5009.35it/s]
943it [00:00, 3610.70it/s]
943it [00:00, 4280.45it/s]
943it [00:00, 4473.91it/s]
943it [00:00, 4438.83it/s]
943it [00:00, 5165.96it/s]
943it [00:00, 5259.28it/s]
943it [00:00, 4607.07it/s]
943it [00:00, 4329.45it/s]
943it [00:00, 4693.81it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_RP3Beta 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_SVD 0.952784 0.750597 0.095228 0.047497 0.053142 0.067082 0.084871 0.076457 0.109075 0.050124 0.241366 0.520459 0.499470 0.992047 0.217893 4.405246 0.953484
0 Self_SVDBaseline 0.913380 0.719974 0.105726 0.045055 0.054233 0.071579 0.096674 0.075899 0.119979 0.059709 0.251389 0.519270 0.476140 0.999788 0.115440 3.578129 0.980463
0 Self_SVD 0.914400 0.718047 0.103393 0.043404 0.052920 0.070119 0.093455 0.074901 0.107441 0.050770 0.200719 0.518433 0.477200 0.866384 0.145743 3.860721 0.972299
0 Ready_SVDBiased 0.940375 0.742264 0.092153 0.039645 0.046804 0.061886 0.079399 0.055967 0.102017 0.047972 0.216876 0.516515 0.441145 0.997455 0.167388 4.235348 0.962085
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003
0 Ready_Random 1.518551 1.218784 0.050583 0.024085 0.027323 0.034826 0.031223 0.026436 0.054902 0.020652 0.137928 0.508570 0.353128 0.987699 0.183261 5.093805 0.908215
0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 0.499885 0.154825 0.402333 0.434343 5.133650 0.877999
0 Ready_U-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 0.496441 0.007423 0.602121 0.010823 2.089186 0.995706
0 Self_TopRated 1.033085 0.822057 0.000954 0.000188 0.000298 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380
0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327

Embeddings

x=np.array([[1,2],[3,4]])
display(x)
x/np.linalg.norm(x, axis=1)[:,None]
array([[1, 2],
       [3, 4]])
array([[0.4472136 , 0.89442719],
       [0.6       , 0.8       ]])
item=random.choice(list(set(train_ui.indices)))

embeddings_norm=model.Qi/np.linalg.norm(model.Qi, axis=1)[:,None] # we do not mean-center here
# omitting normalization also makes sense, but items with a greater magnitude will be recommended more often

similarity_scores=np.dot(embeddings_norm,embeddings_norm[item].T)
top_similar_items=pd.DataFrame(enumerate(similarity_scores), columns=['code', 'score'])\
.sort_values(by=['score'], ascending=[False])[:10]

top_similar_items['item_id']=top_similar_items['code'].apply(lambda x: item_code_id[x])

items=pd.read_csv('./Datasets/ml-100k/movies.csv')

result=pd.merge(top_similar_items, items, left_on='item_id', right_on='id')

result
code score item_id id title genres
0 257 1.000000 258 258 Contact (1997) Drama, Sci-Fi
1 221 0.739090 222 222 Star Trek: First Contact (1996) Action, Adventure, Sci-Fi
2 63 0.736794 64 64 Shawshank Redemption, The (1994) Drama
3 1162 0.736777 1163 1163 Portrait of a Lady, The (1996) Drama
4 125 0.736246 126 126 Spitfire Grill, The (1996) Drama
5 309 0.734523 310 310 Rainmaker, The (1997) Drama
6 1605 0.733826 1606 1606 Deceiver (1997) Crime
7 238 0.731338 239 239 Sneakers (1992) Crime, Drama, Sci-Fi
8 222 0.724939 223 223 Sling Blade (1996) Drama, Thriller
9 266 0.724812 267 267 unknown unknown

project task 5: implement SVD on top baseline (as it is in Surprise library)

# making changes to our implementation by considering additional parameters in the gradient descent procedure 
# seems to be the fastest option
# please save the output in 'Recommendations generated/ml-100k/Self_SVDBaseline_reco.csv' and
# 'Recommendations generated/ml-100k/Self_SVDBaseline_estimations.csv'

Ready-made SVD - Surprise implementation

SVD

import helpers
import surprise as sp
import imp
imp.reload(helpers)

algo = sp.SVD(biased=False) # to use unbiased version

helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_SVD_reco.csv',
          estimations_path='Recommendations generated/ml-100k/Ready_SVD_estimations.csv')
Generating predictions...
Generating top N recommendations...
Generating predictions...

SVD biased - on top baseline

import helpers
import surprise as sp
import imp
imp.reload(helpers)

algo = sp.SVD() # default is biased=True

helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_SVDBiased_reco.csv',
          estimations_path='Recommendations generated/ml-100k/Ready_SVDBiased_estimations.csv')
Generating predictions...
Generating top N recommendations...
Generating predictions...
import imp
imp.reload(ev)

import evaluation_measures as ev
dir_path="Recommendations generated/ml-100k/"
super_reactions=[4,5]
test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 4850.60it/s]
943it [00:00, 4963.77it/s]
943it [00:00, 4500.32it/s]
943it [00:00, 5033.32it/s]
943it [00:00, 4491.41it/s]
943it [00:00, 5213.78it/s]
943it [00:00, 4930.11it/s]
943it [00:00, 4835.44it/s]
943it [00:00, 4567.62it/s]
943it [00:00, 4836.97it/s]
943it [00:00, 3965.34it/s]
943it [00:00, 4790.98it/s]
943it [00:00, 4721.85it/s]
943it [00:00, 4756.99it/s]
943it [00:00, 5004.97it/s]
943it [00:00, 4844.54it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_RP3Beta 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_SVD 0.951985 0.749904 0.105832 0.054287 0.059099 0.074448 0.093562 0.085108 0.124663 0.060089 0.275660 0.523903 0.527041 0.999682 0.214286 4.410890 0.953748
0 Self_SVDBaseline 0.913380 0.719974 0.105726 0.045055 0.054233 0.071579 0.096674 0.075899 0.119979 0.059709 0.251389 0.519270 0.476140 0.999788 0.115440 3.578129 0.980463
0 Self_SVD 0.914400 0.718047 0.103393 0.043404 0.052920 0.070119 0.093455 0.074901 0.107441 0.050770 0.200719 0.518433 0.477200 0.866384 0.145743 3.860721 0.972299
0 Ready_SVDBiased 0.940375 0.742264 0.092153 0.039645 0.046804 0.061886 0.079399 0.055967 0.102017 0.047972 0.216876 0.516515 0.441145 0.997455 0.167388 4.235348 0.962085
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003
0 Ready_Random 1.518551 1.218784 0.050583 0.024085 0.027323 0.034826 0.031223 0.026436 0.054902 0.020652 0.137928 0.508570 0.353128 0.987699 0.183261 5.093805 0.908215
0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 0.499885 0.154825 0.402333 0.434343 5.133650 0.877999
0 Ready_U-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 0.496441 0.007423 0.602121 0.010823 2.089186 0.995706
0 Self_TopRated 1.033085 0.822057 0.000954 0.000188 0.000298 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380
0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327