Compare commits
No commits in common. "master" and "master" have entirely different histories.
8
.idea/.gitignore
vendored
8
.idea/.gitignore
vendored
@ -1,8 +0,0 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
@ -1,19 +0,0 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<option name="ignoredErrors">
|
||||
<list>
|
||||
<option value="W29" />
|
||||
<option value="E501" />
|
||||
<option value="W29" />
|
||||
<option value="E501" />
|
||||
<option value="W29" />
|
||||
<option value="E501" />
|
||||
<option value="W29" />
|
||||
<option value="E501" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
@ -1,6 +0,0 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
@ -1,4 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -1,8 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/paranormal-or-skeptic-ISI-public.iml" filepath="$PROJECT_DIR$/.idea/paranormal-or-skeptic-ISI-public.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
@ -1,8 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -1,6 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
@ -1,455 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!/usr/bin/env python\n",
|
||||
"# coding: utf-8\n",
|
||||
"import lzma\n",
|
||||
"import gensim.models\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import torch\n",
|
||||
"import torch.nn as nn\n",
|
||||
"import torch.nn.functional as F\n",
|
||||
"import torch.optim as optim\n",
|
||||
"from torchvision import datasets, transforms\n",
|
||||
"from torch.optim.lr_scheduler import StepLR"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = lzma.open(\"train/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_train = open('train/expected.tsv').readlines()\n",
|
||||
"X_dev0 = lzma.open(\"dev-0/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_expected_dev0 = open(\"dev-0/expected.tsv\", \"r\").readlines()\n",
|
||||
"X_test = lzma.open(\"test-A/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = [line.split() for line in X_train]\n",
|
||||
"X_dev0 = [line.split() for line in X_dev0]\n",
|
||||
"X_test = [line.split() for line in X_test]\n",
|
||||
"\n",
|
||||
"def tagged_document(list_of_list_of_words):\n",
|
||||
" for i, list_of_words in enumerate(list_of_list_of_words):\n",
|
||||
" yield gensim.models.doc2vec.TaggedDocument(list_of_words, [i])\n",
|
||||
"\n",
|
||||
"data_training = list(tagged_document(X_train))\n",
|
||||
"model = gensim.models.doc2vec.Doc2Vec(vector_size=1000)\n",
|
||||
"model.build_vocab(data_training)\n",
|
||||
"\n",
|
||||
"X_train_d2v = [model.infer_vector(line) for line in X_train]\n",
|
||||
"X_dev0_d2v = [model.infer_vector(line) for line in X_dev0]\n",
|
||||
"X_test_d2v = [model.infer_vector(line) for line in X_test]\n",
|
||||
"\n",
|
||||
"y_train = np.array([int(i) for i in y_train])\n",
|
||||
"y_expected_dev0 = np.array([int(i) for i in y_expected_dev0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Net(nn.Module):\n",
|
||||
" \"\"\"W PyTorchu tworzenie sieci neuronowej\n",
|
||||
" polega na zdefiniowaniu klasy, która dziedziczy z nn.Module.\n",
|
||||
" \"\"\"\n",
|
||||
" \n",
|
||||
" def __init__(self):\n",
|
||||
" super().__init__()\n",
|
||||
" \n",
|
||||
" # Warstwy splotowe\n",
|
||||
" self.conv1 = nn.Conv2d(1, 32, 3, 1)\n",
|
||||
" self.conv2 = nn.Conv2d(32, 64, 3, 1)\n",
|
||||
" \n",
|
||||
" # Warstwy dropout\n",
|
||||
" self.dropout1 = nn.Dropout(0.25)\n",
|
||||
" self.dropout2 = nn.Dropout(0.5)\n",
|
||||
" \n",
|
||||
" # Warstwy liniowe\n",
|
||||
" self.fc1 = nn.Linear(9216, 128)\n",
|
||||
" self.fc2 = nn.Linear(128, 10)\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" \"\"\"Definiujemy przechodzenie \"do przodu\" jako kolejne przekształcenia wejścia x\"\"\"\n",
|
||||
" x = self.conv1(x)\n",
|
||||
" x = F.relu(x)\n",
|
||||
" x = self.conv2(x)\n",
|
||||
" x = F.relu(x)\n",
|
||||
" x = F.max_pool2d(x, 2)\n",
|
||||
" x = self.dropout1(x)\n",
|
||||
" x = torch.flatten(x, 1)\n",
|
||||
" x = self.fc1(x)\n",
|
||||
" x = F.relu(x)\n",
|
||||
" x = self.dropout2(x)\n",
|
||||
" x = self.fc2(x)\n",
|
||||
" output = F.log_softmax(x, dim=1)\n",
|
||||
" return output\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def train(model, device, train_loader, optimizer, epoch, log_interval, dry_run):\n",
|
||||
" \"\"\"Uczenie modelu\"\"\"\n",
|
||||
" model.train()\n",
|
||||
" for batch_idx, (data, target) in enumerate(train_loader):\n",
|
||||
" data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)\n",
|
||||
" optimizer.zero_grad() # wyzerowanie gradientu\n",
|
||||
" output = model(data) # przejście \"do przodu\"\n",
|
||||
" loss = F.nll_loss(output, target) # obliczenie funkcji kosztu\n",
|
||||
" loss.backward() # propagacja wsteczna\n",
|
||||
" optimizer.step() # krok optymalizatora\n",
|
||||
" if batch_idx % log_interval == 0:\n",
|
||||
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n",
|
||||
" epoch, batch_idx * len(data), len(train_loader.dataset),\n",
|
||||
" 100. * batch_idx / len(train_loader), loss.item()))\n",
|
||||
" if dry_run:\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def test(model, device, test_loader):\n",
|
||||
" \"\"\"Testowanie modelu\"\"\"\n",
|
||||
" model.eval()\n",
|
||||
" test_loss = 0\n",
|
||||
" correct = 0\n",
|
||||
" with torch.no_grad():\n",
|
||||
" for data, target in test_loader:\n",
|
||||
" data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)\n",
|
||||
" output = model(data) # przejście \"do przodu\"\n",
|
||||
" test_loss += F.nll_loss(output, target, reduction='sum').item() # suma kosztów z każdego batcha\n",
|
||||
" pred = output.argmax(dim=1, keepdim=True) # predykcja na podstawie maks. logarytmu prawdopodobieństwa\n",
|
||||
" correct += pred.eq(target.view_as(pred)).sum().item()\n",
|
||||
"\n",
|
||||
" test_loss /= len(test_loader.dataset) # obliczenie kosztu na zbiorze testowym\n",
|
||||
"\n",
|
||||
" print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n",
|
||||
" test_loss, correct, len(test_loader.dataset),\n",
|
||||
" 100. * correct / len(test_loader.dataset)))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def run(\n",
|
||||
" batch_size=64,\n",
|
||||
" test_batch_size=1000,\n",
|
||||
" epochs=14,\n",
|
||||
" lr=1.0,\n",
|
||||
" gamma=0.7,\n",
|
||||
" no_cuda=False,\n",
|
||||
" dry_run=False,\n",
|
||||
" seed=1,\n",
|
||||
" log_interval=10,\n",
|
||||
" save_model=False,\n",
|
||||
" ):\n",
|
||||
" \"\"\"Main training function.\n",
|
||||
" \n",
|
||||
" Arguments:\n",
|
||||
" batch_size - wielkość batcha podczas uczenia (default: 64),\n",
|
||||
" test_batch_size - wielkość batcha podczas testowania (default: 1000)\n",
|
||||
" epochs - liczba epok uczenia (default: 14)\n",
|
||||
" lr - współczynnik uczenia (learning rate) (default: 1.0)\n",
|
||||
" gamma - współczynnik gamma (dla optymalizatora) (default: 0.7)\n",
|
||||
" no_cuda - wyłącza uczenie na karcie graficznej (default: False)\n",
|
||||
" dry_run - szybko (\"na sucho\") sprawdza pojedyncze przejście (default: False)\n",
|
||||
" seed - ziarno generatora liczb pseudolosowych (default: 1)\n",
|
||||
" log_interval - interwał logowania stanu uczenia (default: 10)\n",
|
||||
" save_model - zapisuje bieżący model (default: False)\n",
|
||||
" \"\"\"\n",
|
||||
" use_cuda = no_cuda and torch.cuda.is_available()\n",
|
||||
"\n",
|
||||
" torch.manual_seed(seed)\n",
|
||||
"\n",
|
||||
" device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
|
||||
"\n",
|
||||
" train_kwargs = {'batch_size': batch_size}\n",
|
||||
" test_kwargs = {'batch_size': test_batch_size}\n",
|
||||
" if use_cuda:\n",
|
||||
" cuda_kwargs = {'num_workers': 1,\n",
|
||||
" 'pin_memory': True,\n",
|
||||
" 'shuffle': True}\n",
|
||||
" train_kwargs.update(cuda_kwargs)\n",
|
||||
" test_kwargs.update(cuda_kwargs)\n",
|
||||
"\n",
|
||||
" transform=transforms.Compose([\n",
|
||||
" transforms.ToTensor(),\n",
|
||||
" transforms.Normalize((0.1307,), (0.3081,))\n",
|
||||
" ])\n",
|
||||
" dataset1 = datasets.MNIST('../data', train=True, download=True,\n",
|
||||
" transform=transform)\n",
|
||||
" dataset2 = datasets.MNIST('../data', train=False,\n",
|
||||
" transform=transform)\n",
|
||||
" train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)\n",
|
||||
" test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)\n",
|
||||
"\n",
|
||||
" model = Net().to(device)\n",
|
||||
" optimizer = optim.Adadelta(model.parameters(), lr=lr)\n",
|
||||
"\n",
|
||||
" scheduler = StepLR(optimizer, step_size=1, gamma=gamma)\n",
|
||||
" for epoch in range(1, epochs + 1):\n",
|
||||
" train(model, device, train_loader, optimizer, epoch, log_interval, dry_run)\n",
|
||||
" test(model, device, test_loader)\n",
|
||||
" scheduler.step()\n",
|
||||
"\n",
|
||||
" if save_model:\n",
|
||||
" torch.save(model.state_dict(), \"mnist_cnn.pt\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 86,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 87,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 85,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.003825023"
|
||||
]
|
||||
},
|
||||
"execution_count": 85,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 88,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FEATURES = 1000\n",
|
||||
"class NeuralNetworkModel(torch.nn.Module):\n",
|
||||
"\n",
|
||||
" def __init__(self):\n",
|
||||
" super(NeuralNetworkModel, self).__init__()\n",
|
||||
" self.fc1 = torch.nn.Linear(FEATURES,500)\n",
|
||||
" self.fc2 = torch.nn.Linear(500,1)\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" x = self.fc1(x)\n",
|
||||
" x = torch.relu(x)\n",
|
||||
" x = self.fc2(x)\n",
|
||||
" x = torch.sigmoid(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 89,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nn_model = NeuralNetworkModel()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 90,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"BATCH_SIZE = 5"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 91,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"criterion = torch.nn.BCELoss()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_loss_acc(model, X_dataset, Y_dataset):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" model.eval()\n",
|
||||
" for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
|
||||
" X = np.array(X_dataset[i:i+BATCH_SIZE])\n",
|
||||
" X = torch.tensor(X)\n",
|
||||
" Y = Y_dataset[i:i+BATCH_SIZE]\n",
|
||||
" Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
|
||||
" Y_predictions = model(X)\n",
|
||||
" acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
|
||||
" items_total += Y.shape[0]\n",
|
||||
"\n",
|
||||
" loss = criterion(Y_predictions, Y)\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * Y.shape[0]\n",
|
||||
" return (loss_score / items_total), (acc_score / items_total)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for epoch in range(5):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" nn_model.train()\n",
|
||||
" for i in range(0, y_train.shape[0], BATCH_SIZE):\n",
|
||||
" X = np.array(X_train_d2v[i:i+BATCH_SIZE])\n",
|
||||
" X = torch.tensor(X)\n",
|
||||
" Y = y_train[i:i+BATCH_SIZE]\n",
|
||||
" Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
|
||||
" Y_predictions = nn_model(X)\n",
|
||||
" acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
|
||||
" items_total += Y.shape[0]\n",
|
||||
"\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = criterion(Y_predictions, Y)\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * Y.shape[0]\n",
|
||||
"\n",
|
||||
" display(epoch)\n",
|
||||
" display(get_loss_acc(nn_model, X_train_d2v, y_train))\n",
|
||||
" display(get_loss_acc(nn_model, X_dev0_d2v, y_expected_dev0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
5272
dev-0/out.tsv
5272
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
5272
dev-0/outNB.tsv
5272
dev-0/outNB.tsv
File diff suppressed because it is too large
Load Diff
588
run.ipynb
588
run.ipynb
@ -1,588 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!/usr/bin/env python\n",
|
||||
"# coding: utf-8\n",
|
||||
"import lzma\n",
|
||||
"from gensim.models import Word2Vec\n",
|
||||
"import gensim.downloader\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = lzma.open(\"train/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_train = np.array(open('train/expected.tsv').readlines())\n",
|
||||
"X_dev0 = lzma.open(\"dev-0/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_expected_dev0 = np.array(open(\"dev-0/expected.tsv\", \"r\").readlines())\n",
|
||||
"X_test = lzma.open(\"test-A/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = [line.split() for line in X_train]\n",
|
||||
"X_dev0 = [line.split() for line in X_dev0]\n",
|
||||
"X_test = [line.split() for line in X_test]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_w2v = Word2Vec(X_train, vector_size=100, window=5, min_count=1, workers=4)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 79,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def vectorize(model, data):\n",
|
||||
" return np.array([np.mean([model.wv[word] if word in model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in data])\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 80,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train_w2v = vectorize(model_w2v, X_train)\n",
|
||||
"X_dev0_w2v = vectorize(model_w2v, X_dev0)\n",
|
||||
"X_test_w2v = vectorize(model_w2v, X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FEATURES = 100\n",
|
||||
"\n",
|
||||
"class NeuralNetworkModel(torch.nn.Module):\n",
|
||||
"\n",
|
||||
" def __init__(self):\n",
|
||||
" super(NeuralNetworkModel, self).__init__()\n",
|
||||
" self.fc1 = torch.nn.Linear(FEATURES,500)\n",
|
||||
" self.fc2 = torch.nn.Linear(500,1)\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" x = self.fc1(x)\n",
|
||||
" x = torch.relu(x)\n",
|
||||
" x = self.fc2(x)\n",
|
||||
" x = torch.sigmoid(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 145,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nn_model = NeuralNetworkModel()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 146,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"BATCH_SIZE = 42"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 147,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"criterion = torch.nn.BCELoss()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 148,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 149,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_loss_acc(model, X_dataset, Y_dataset):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" model.eval()\n",
|
||||
" for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
|
||||
" X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)\n",
|
||||
" X = torch.tensor(X)\n",
|
||||
" Y = Y_dataset[i:i+BATCH_SIZE]\n",
|
||||
" Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
|
||||
" Y_predictions = model(X)\n",
|
||||
" acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
|
||||
" items_total += Y.shape[0]\n",
|
||||
"\n",
|
||||
" loss = criterion(Y_predictions, Y)\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * Y.shape[0]\n",
|
||||
" return (loss_score / items_total), (acc_score / items_total)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 150,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(model, data):\n",
|
||||
" model.eval()\n",
|
||||
" predictions = []\n",
|
||||
" for x in data:\n",
|
||||
" X = torch.tensor(np.array(x).astype(np.float32))\n",
|
||||
" Y_predictions = model(X)\n",
|
||||
" if Y_predictions[0] > 0.5:\n",
|
||||
" predictions.append(\"1\")\n",
|
||||
" else:\n",
|
||||
" predictions.append(\"0\")\n",
|
||||
" return predictions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 151,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true,
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.49161445487174543, 0.7499197110287693)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4990149180719994, 0.7420333839150227)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.486242138754709, 0.7533833599812141)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4960476360955079, 0.7448786039453718)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"2"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.48170865143118824, 0.7566018254086104)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.49339661830880754, 0.7448786039453718)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.47863767532834156, 0.7587877573995352)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.49210414077877457, 0.7503793626707133)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"4"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4755889592268004, 0.7613466446116604)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.49055553189223017, 0.753793626707132)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"5"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.47395927866325194, 0.7623273787118541)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4905445413022374, 0.7541729893778453)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"6"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4721670034531442, 0.7639055318237855)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4896522785377249, 0.7522761760242792)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"7"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4713666787153674, 0.7644166186083936)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4897225151384003, 0.7532245827010622)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"8"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4687599671611641, 0.7661674361745845)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4882916720620779, 0.7524658573596358)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"9"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.4669961705231401, 0.767617817590364)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0.48753329053272426, 0.7534142640364189)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for epoch in range(10):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" nn_model.train()\n",
|
||||
" for i in range(0, y_train.shape[0], BATCH_SIZE):\n",
|
||||
" X = X_train_w2v[i:i+BATCH_SIZE]\n",
|
||||
" X = torch.tensor(X)\n",
|
||||
" Y = y_train[i:i+BATCH_SIZE]\n",
|
||||
" Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
|
||||
" Y_predictions = nn_model(X)\n",
|
||||
" acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
|
||||
" items_total += Y.shape[0]\n",
|
||||
"\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = criterion(Y_predictions, Y)\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * Y.shape[0]\n",
|
||||
"\n",
|
||||
" display(epoch)\n",
|
||||
" display(get_loss_acc(nn_model, X_train_w2v, y_train))\n",
|
||||
" display(get_loss_acc(nn_model, X_dev0_w2v, y_expected_dev0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 152,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred_dev0 = predict(nn_model, X_dev0_w2v)\n",
|
||||
"y_pred_test = predict(nn_model, X_test_w2v)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 153,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 158,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"open('dev-0/out.tsv', 'w').writelines([i+'\\n' for i in y_pred_dev0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 159,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"open('test-A/out.tsv', 'w').writelines([i+'\\n' for i in y_pred_test])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
114
run.py
114
run.py
@ -1,114 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
import lzma
|
||||
from gensim.models import Word2Vec
|
||||
import gensim.downloader
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
|
||||
X_train = lzma.open("train/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
y_train = np.array(open('train/expected.tsv').readlines())
|
||||
X_dev0 = lzma.open("dev-0/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
y_expected_dev0 = np.array(open("dev-0/expected.tsv", "r").readlines())
|
||||
X_test = lzma.open("test-A/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
|
||||
X_train = [line.split() for line in X_train]
|
||||
X_dev0 = [line.split() for line in X_dev0]
|
||||
X_test = [line.split() for line in X_test]
|
||||
|
||||
model_w2v = Word2Vec(X_train, vector_size=100, window=5, min_count=1, workers=4)
|
||||
|
||||
def vectorize(model, data):
|
||||
return np.array([np.mean([model.wv[word] if word in model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in data])
|
||||
|
||||
|
||||
X_train_w2v = vectorize(model_w2v, X_train)
|
||||
X_dev0_w2v = vectorize(model_w2v, X_dev0)
|
||||
X_test_w2v = vectorize(model_w2v, X_test)
|
||||
|
||||
|
||||
FEATURES = 100
|
||||
|
||||
class NeuralNetworkModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(NeuralNetworkModel, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(FEATURES,500)
|
||||
self.fc2 = torch.nn.Linear(500,1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
nn_model = NeuralNetworkModel()
|
||||
BATCH_SIZE = 42
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
||||
|
||||
def get_loss_acc(model, X_dataset, Y_dataset):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
model.eval()
|
||||
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
|
||||
X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)
|
||||
X = torch.tensor(X)
|
||||
Y = Y_dataset[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
loss = criterion(Y_predictions, Y)
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
return (loss_score / items_total), (acc_score / items_total)
|
||||
|
||||
def predict(model, data):
|
||||
model.eval()
|
||||
predictions = []
|
||||
for x in data:
|
||||
X = torch.tensor(np.array(x).astype(np.float32))
|
||||
Y_predictions = model(X)
|
||||
if Y_predictions[0] > 0.5:
|
||||
predictions.append("1")
|
||||
else:
|
||||
predictions.append("0")
|
||||
return predictions
|
||||
|
||||
for epoch in range(10):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
nn_model.train()
|
||||
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
||||
X = X_train_w2v[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
Y = y_train[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = nn_model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions, Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
|
||||
display(epoch)
|
||||
display(get_loss_acc(nn_model, X_train_w2v, y_train))
|
||||
display(get_loss_acc(nn_model, X_dev0_w2v, y_expected_dev0))
|
||||
|
||||
|
||||
y_pred_dev0 = predict(nn_model, X_dev0_w2v)
|
||||
y_pred_test = predict(nn_model, X_test_w2v)
|
||||
|
||||
open('dev-0/out.tsv', 'w').writelines([i+'\n' for i in y_pred_dev0])
|
||||
open('test-A/out.tsv', 'w').writelines([i+'\n' for i in y_pred_test])
|
135
runNB.ipynb
135
runNB.ipynb
@ -1,135 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!/usr/bin/env python\n",
|
||||
"# coding: utf-8\n",
|
||||
"\n",
|
||||
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
||||
"import lzma\n",
|
||||
"\n",
|
||||
"X_train = lzma.open(\"train/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_train = open('train/expected.tsv').readlines()\n",
|
||||
"X_dev0 = lzma.open(\"dev-0/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n",
|
||||
"y_expected_dev0 = open(\"dev-0/expected.tsv\", \"r\").readlines()\n",
|
||||
"X_test = lzma.open(\"test-A/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"count_vect = CountVectorizer()\n",
|
||||
"X_train_counts = count_vect.fit_transform(X_train)\n",
|
||||
"X_dev0_counts = count_vect.transform(X_dev0)\n",
|
||||
"X_test_counts = count_vect.transform(X_test)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"clf = MultinomialNB().fit(X_train_counts, y_train)\n",
|
||||
"\n",
|
||||
"y_predicted_dev0_MNB = clf.predict(X_dev0_counts)\n",
|
||||
"y_predicted_test_MNB = clf.predict(X_test_counts)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Accuracy dev0: 0.8025417298937785\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"accuracy_dev0_MNB = accuracy_score(y_expected_dev0, y_predicted_dev0_MNB)\n",
|
||||
"print(f\"Accuracy dev0: {accuracy_dev0_MNB}\")\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"open(\"dev-0/out.tsv\", mode='w').writelines(y_predicted_dev0_MNB)\n",
|
||||
"open(\"test-A/out.tsv\", mode='w').writelines(y_predicted_test_MNB)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
24
runNB.py
24
runNB.py
@ -1,24 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
import lzma
|
||||
|
||||
X_train = lzma.open("train/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
y_train = open('train/expected.tsv').readlines()
|
||||
X_dev0 = lzma.open("dev-0/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
y_expected_dev0 = open("dev-0/expected.tsv", "r").readlines()
|
||||
X_test = lzma.open("test-A/in.tsv.xz", mode='rt', encoding='utf-8').readlines()
|
||||
|
||||
count_vect = CountVectorizer()
|
||||
X_train_counts = count_vect.fit_transform(X_train)
|
||||
X_dev0_counts = count_vect.transform(X_dev0)
|
||||
X_test_counts = count_vect.transform(X_test)
|
||||
|
||||
clf = MultinomialNB().fit(X_train_counts, y_train)
|
||||
y_predicted_dev0_MNB = clf.predict(X_dev0_counts)
|
||||
y_predicted_test_MNB = clf.predict(X_test_counts)
|
||||
|
||||
open("dev-0/out.tsv", mode='w').writelines(y_predicted_dev0_MNB)
|
||||
open("test-A/out.tsv", mode='w').writelines(y_predicted_test_MNB)
|
5152
test-A/out.tsv
5152
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
5152
test-A/outNB.tsv
5152
test-A/outNB.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user