Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
962ca45b2c | ||
|
43dbf81d83 | ||
|
023a4e4361 | ||
|
dbadedfc1c |
5
.gitignore
vendored
5
.gitignore
vendored
@ -6,8 +6,3 @@
|
||||
*.o
|
||||
.DS_Store
|
||||
.token
|
||||
venv/*
|
||||
*.pickle
|
||||
.idea/*
|
||||
.vscode/*
|
||||
in.tsv
|
2206
dev-0/out.tsv
2206
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
92
generate.py
Normal file
92
generate.py
Normal file
@ -0,0 +1,92 @@
|
||||
import pandas as pd
|
||||
from transformers import BertTokenizer, AdamW, AutoModelForSequenceClassification
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
|
||||
import torch.nn as nn
|
||||
from sklearn.utils.class_weight import compute_class_weight
|
||||
import numpy as np
|
||||
from sklearn.metrics import classification_report
|
||||
from sklearn.metrics import accuracy_score, f1_score
|
||||
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||
from transformers import Trainer, TrainingArguments
|
||||
import csv
|
||||
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||
item["labels"] = torch.tensor([self.labels[idx]])
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
def save_tsv_result(path, data):
|
||||
with open(path, "w") as save:
|
||||
writer = csv.writer(save, delimiter='\t', lineterminator='\n')
|
||||
for value in [str(x) for x in data]:
|
||||
writer.writerow([value])
|
||||
|
||||
def predictions_for_set(inputs, masks):
|
||||
predictions = []
|
||||
with torch.no_grad():
|
||||
batch_size = 60
|
||||
for i in range(0, len(inputs), batch_size):
|
||||
preds = model(inputs[i: i + batch_size].to(device),
|
||||
masks[i: i + batch_size].to(device))
|
||||
preds = preds.logits.detach().cpu().numpy()
|
||||
preds = np.argmax(preds, axis=1)
|
||||
predictions += preds.tolist()
|
||||
return predictions
|
||||
|
||||
device = torch.device('cuda')
|
||||
|
||||
# train_texts = \
|
||||
# pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t',
|
||||
# header=None, error_bad_lines=False, quoting=3)[0].tolist()
|
||||
# train_labels = pd.read_csv(
|
||||
# 'train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()
|
||||
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz',
|
||||
sep='\t', header=None, quoting=3)[0].tolist()
|
||||
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t',
|
||||
header=None, quoting=3)[0].tolist()
|
||||
test_texts = pd.read_csv('test-A/in.tsv.xz', compression='xz', sep='\t',
|
||||
header=None, error_bad_lines=False, quoting=3)[0].tolist()
|
||||
|
||||
model_name = "bert-base-uncased-pretrained"
|
||||
|
||||
model = BertForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=len(pd.unique(dev_labels))).to(device)
|
||||
max_length = 512
|
||||
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||
|
||||
# model.load_pretrained(model_path)
|
||||
# tokenizer.load_pretrainded(model_path)
|
||||
|
||||
# train_encodings = tokenizer(
|
||||
# train_texts, truncation=True, padding=True, max_length=max_length)
|
||||
valid_encodings = tokenizer(
|
||||
dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||
test_encodings = tokenizer(
|
||||
test_texts, truncation=True, padding=True, max_length=max_length)
|
||||
|
||||
input_ids_val = torch.tensor(valid_encodings.data['input_ids'])
|
||||
attention_mask_val = torch.tensor(valid_encodings.data['attention_mask'])
|
||||
|
||||
input_ids_test = torch.tensor(test_encodings.data['input_ids'])
|
||||
attention_mask_test = torch.tensor(test_encodings.data['attention_mask'])
|
||||
|
||||
predictions = predictions_for_set(input_ids_val, attention_mask_val)
|
||||
print("Predictions for dev set:")
|
||||
print(classification_report(dev_labels, predictions))
|
||||
print(accuracy_score(dev_labels, predictions))
|
||||
print(f1_score(dev_labels, predictions))
|
||||
|
||||
save_tsv_result("dev-0/out.tsv", predictions)
|
||||
|
||||
predictions = predictions_for_set(input_ids_test, attention_mask_test)
|
||||
save_tsv_result("test-A/out.tsv", predictions)
|
128
main.py
128
main.py
@ -1,54 +1,90 @@
|
||||
"""
|
||||
Zadanie domowe
|
||||
wybrać jedno z poniższych repozytoriów i je sforkować:
|
||||
https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public
|
||||
https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public
|
||||
stworzyć klasyfikator bazujący na prostej sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze).
|
||||
Zamiast tfidf proszę skorzystać z jakieś reprezentacji gęstej (np. word2vec).
|
||||
stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
|
||||
wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67
|
||||
proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do
|
||||
swojego repo termin 25.05, 70 punktów
|
||||
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import spacy
|
||||
from net import FFN
|
||||
import numpy as np
|
||||
import torch
|
||||
from utils import create_embeddings_file, load_embeddings_file
|
||||
from nltk.tokenize import word_tokenize
|
||||
# sp = spacy.load('en_core_web_sm')
|
||||
from transformers.file_utils import is_torch_available
|
||||
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||
from transformers import Trainer, TrainingArguments
|
||||
import numpy as np
|
||||
import random
|
||||
from sklearn.metrics import accuracy_score
|
||||
import pandas as pd
|
||||
|
||||
# def word2vec(word):
|
||||
# return sp(word).vector
|
||||
# return np.random.uniform(low=0.0, high=1.0, size=(384,))
|
||||
|
||||
train_data = pd.read_csv("train/in.tsv", sep='\t')
|
||||
train_data.columns = ['PostText', 'Timestamp']
|
||||
train_expected = pd.read_csv("train/expected.tsv", sep='\t')
|
||||
train_expected.columns = ['Label']
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
# test_data = pd.read_csv("test-A/in.tsv", sep='\t')
|
||||
# test_data.columns = ['PostText', 'Timestamp']
|
||||
def __getitem__(self, idx):
|
||||
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||
item["labels"] = torch.tensor([self.labels[idx]])
|
||||
return item
|
||||
|
||||
# dev_data = pd.read_csv('dev-0/in.tsv', sep='\t')
|
||||
# dev_data.columns = ['PostText', 'Timestamp']
|
||||
# dev_expected = pd.read_csv('dev-0/expected.tsv', sep='\t')
|
||||
# dev_expected.columns = ['Label']
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
# create_embeddings_file(dev_data['PostText'], 'dev-0/embeddings.csv', word2vec)
|
||||
# create_embeddings_file(test_data['PostText'], 'test-A/embeddings.csv', word2vec)
|
||||
# create_embeddings_file(train_data['PostText'], 'train/embeddings.csv', word2vec)
|
||||
|
||||
# train_data = load_embeddings_file('train/embeddings.csv').to_numpy()
|
||||
# dev_data = load_embeddings_file('dev-0/embeddings.csv').to_numpy()
|
||||
# test_data = load_embeddings_file('test-A/embeddings.csv').to_numpy()
|
||||
def set_seed(seed: int):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
if is_torch_available():
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
model = FFN(300, 1, 300, 300, 0.01, 4, 100)
|
||||
# model.double()
|
||||
# model.train([np.asarray(word_tokenize(x)) for x in train_data['PostText']], train_expected['Label'])
|
||||
model.load()
|
||||
model.double()
|
||||
model.test([np.asarray(word_tokenize(x)) for x in train_data['PostText']], train_expected['Label'], "train/out.tsv")
|
||||
def compute_metrics(pred):
|
||||
labels = pred.label_ids
|
||||
preds = pred.predictions.argmax(-1)
|
||||
acc = accuracy_score(labels, preds)
|
||||
return {
|
||||
'accuracy': acc,
|
||||
}
|
||||
|
||||
set_seed(1)
|
||||
|
||||
train_texts = \
|
||||
pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t', header=None, error_bad_lines=False, quoting=3)[0].tolist()[:25000]
|
||||
train_labels = pd.read_csv('train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:25000]
|
||||
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||
# test_texts = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
|
||||
|
||||
model_name = "bert-base-uncased"
|
||||
max_length = 25
|
||||
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||
|
||||
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
|
||||
valid_encodings = tokenizer(dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||
|
||||
train_dataset = Dataset(train_encodings, train_labels)
|
||||
valid_dataset = Dataset(valid_encodings, dev_labels)
|
||||
|
||||
model = BertForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=len(pd.unique(train_labels))).to("cuda")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='./results', # output directory
|
||||
num_train_epochs=1, # total number of training epochs
|
||||
per_device_train_batch_size=60, # batch size per device during training
|
||||
per_device_eval_batch_size=60, # batch size for evaluation
|
||||
warmup_steps=100, # number of warmup steps for learning rate scheduler
|
||||
weight_decay=0.01, # strength of weight decay
|
||||
logging_dir='./logs', # directory for storing logs
|
||||
load_best_model_at_end=True, # load the best model when finished training (default metric is loss)
|
||||
# but you can specify `metric_for_best_model` argument to change to accuracy or other metric
|
||||
logging_steps=200, # log & save weights each logging_steps
|
||||
evaluation_strategy="steps", # evaluate each `logging_steps`
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model, # the instantiated Transformers model to be trained
|
||||
args=training_args, # training arguments, defined above
|
||||
train_dataset=train_dataset, # training dataset
|
||||
eval_dataset=valid_dataset, # evaluation dataset
|
||||
compute_metrics=compute_metrics, # the callback that computes metrics of interest
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
trainer.evaluate()
|
||||
|
||||
model_path = "bert-base-uncased-pretrained"
|
||||
model.save_pretrained(model_path)
|
||||
tokenizer.save_pretrained(model_path)
|
103
net.py
103
net.py
@ -1,103 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from torchvision import transforms
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from word2vec import Word2Vec
|
||||
|
||||
class FFN(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim, hidden1_size, hidden2_size, lr, epochs, batch_size):
|
||||
super(FFN, self).__init__()
|
||||
self.path = 'model1.pickle'
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.output_dim = output_dim
|
||||
self.word2vec = Word2Vec()
|
||||
self.word2vec.load()
|
||||
self.batch_size = batch_size
|
||||
self.input_dim = input_dim
|
||||
self.fc1 = nn.Linear(batch_size, hidden1_size)
|
||||
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
|
||||
self.fc3 = nn.Linear(hidden2_size, hidden2_size)
|
||||
self.fc4 = nn.Linear(hidden2_size, hidden2_size)
|
||||
self.fc5 = nn.Linear(hidden2_size, batch_size)
|
||||
|
||||
def forward(self, data):
|
||||
data = F.relu(self.fc1(data))
|
||||
data = F.relu(self.fc2(data))
|
||||
data = F.relu(self.fc3(data))
|
||||
data = F.relu(self.fc4(data))
|
||||
data = F.sigmoid(self.fc5(data))
|
||||
return data
|
||||
|
||||
def serialize(self):
|
||||
with open(self.path, 'wb') as file:
|
||||
pickle.dump(self, file)
|
||||
|
||||
def load(self):
|
||||
with open(self.path, 'rb') as file:
|
||||
self = pickle.load(file)
|
||||
|
||||
def batch(self, iterable, n=1):
|
||||
l = len(iterable)
|
||||
for ndx in range(0, l, n):
|
||||
yield iterable[ndx:min(ndx + n, l)]
|
||||
|
||||
"""
|
||||
data is a tuple of embedding vector and a label of 0/1
|
||||
"""
|
||||
def train(self, data, expected):
|
||||
self.zero_grad()
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = optim.Adam(self.parameters(), lr=self.lr)
|
||||
batch_size = self.batch_size
|
||||
num_of_classes = self.output_dim
|
||||
for epoch in range(self.epochs):
|
||||
epoch_loss = 0.0
|
||||
idx = 0
|
||||
for i in range(0, int(len(data)/batch_size)*batch_size, batch_size):
|
||||
inputs = data[i:i + batch_size]
|
||||
labels = expected[i:i+ batch_size]
|
||||
optimizer.zero_grad()
|
||||
outputs = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
|
||||
target = torch.tensor(labels.values).double()
|
||||
loss = criterion(outputs.view(batch_size), target.view(-1,))
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_loss += loss.item()
|
||||
if(idx % 1000 == 0):
|
||||
print('epoch: {}, idx: {}, loss: {}'.format(epoch, idx, epoch_loss/1000))
|
||||
epoch_loss = 0
|
||||
idx += 1
|
||||
self.serialize()
|
||||
|
||||
def test(self, data, expected, path):
|
||||
correct = 0
|
||||
incorrect = 0
|
||||
total = 0
|
||||
predictions = []
|
||||
batch_size = self.batch_size
|
||||
for i in range(0, int(len(data)/batch_size)*batch_size, batch_size):
|
||||
inputs = data[i:i + batch_size]
|
||||
labels = expected[i:i+ batch_size]
|
||||
predicted = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
|
||||
score = [1 if x > 0.5 else 0 for x in predicted]
|
||||
|
||||
for x, y in zip(score, labels):
|
||||
if(x == y):
|
||||
correct += 1
|
||||
else:
|
||||
incorrect += 1
|
||||
predictions.append(score)
|
||||
|
||||
print(correct)
|
||||
print(incorrect)
|
||||
print(correct/(incorrect + correct))
|
||||
df = pd.DataFrame(np.asarray(predictions).reshape(int(len(data)/batch_size)*batch_size))
|
||||
df.reset_index(drop=True, inplace=True)
|
||||
df.to_csv(path, sep="\t", index=False)
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/out.tsv
289579
train/out.tsv
File diff suppressed because it is too large
Load Diff
11
utils.py
11
utils.py
@ -1,11 +0,0 @@
|
||||
import pandas as pd
|
||||
|
||||
def create_embeddings_file(data, path, func):
|
||||
out = []
|
||||
for line in data:
|
||||
out.append(func(line))
|
||||
df = pd.DataFrame(out)
|
||||
df.to_csv(path)
|
||||
|
||||
def load_embeddings_file(path):
|
||||
return pd.read_csv(path)
|
15
word2vec.py
15
word2vec.py
@ -1,15 +0,0 @@
|
||||
import gensim.downloader
|
||||
import numpy as np
|
||||
|
||||
class Word2Vec():
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def load(self):
|
||||
self.model = gensim.downloader.load('word2vec-google-news-300')
|
||||
|
||||
def sentence2vec(self, sentence):
|
||||
return np.mean([self.model[word] if word in self.model else np.zeros(300) for word in sentence])
|
||||
|
||||
def list_of_sentences2vec(self, sentences):
|
||||
return [self.sentence2vec(x) for x in sentences]
|
Loading…
Reference in New Issue
Block a user