workshops_recommender_systems/P5. Graph-based.ipynb
2020-06-13 22:14:04 +02:00

576 KiB
Raw Blame History

Self made RP3-beta

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
import time
import matplotlib.pyplot as plt

train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None)
test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)
train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)
class RP3Beta():
    def fit(self, train_ui, alpha, beta):
        """We weight our edges by user's explicit ratings so if user rated movie high we'll follow that path
        with higher probability."""
        self.train_ui=train_ui
        self.train_iu=train_ui.transpose()
        
        self.alpha = alpha
        self.beta = beta
        
        # Define Pui 
        Pui=sparse.csr_matrix(self.train_ui/self.train_ui.sum(axis=1))
        
        # Define Piu
        to_divide=np.vectorize(lambda x: x if x>0 else 1)(self.train_iu.sum(axis=1)) # to avoid dividing by zero
        Piu=sparse.csr_matrix(self.train_iu/to_divide)
        item_orders=(self.train_ui>0).sum(axis=0)
        
        Pui = Pui.power(self.alpha)
        Piu = Piu.power(self.alpha)

        P3=Pui*Piu*Pui
        
        P3/=np.power(np.vectorize(lambda x: x if x>0 else 1)(item_orders), self.beta)
        
        self.estimations=np.array(P3)
    
    def recommend(self, user_code_id, item_code_id, topK=10):
        
        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):
            
            user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result=[]
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid]+list(chain(*item_scores[:topK])))
        return result
    
    def estimate(self, user_code_id, item_code_id, test_ui):
        result=[]
        for user, item in zip(*test_ui.nonzero()):
            result.append([user_code_id[user], item_code_id[item], 
                           self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])
        return result
model=RP3Beta()
model.fit(train_ui, alpha=1, beta=0)
top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_P3_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', index=False, header=False)
import evaluation_measures as ev
estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 2167.43it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR HR2 Reco in test Test coverage Shannon Gini
0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.0 0.077201 3.875892 0.974947

Let's check hiperparameters

Alpha
from tqdm import tqdm
result=[]
for alpha in tqdm([round(i,1) for i in np.arange(0.2,1.6001,0.2)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=alpha, beta=0)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Alpha", alpha)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|                                                                                            | 0/8 [00:00<?, ?it/s]
0it [00:00, ?it/s]
280it [00:00, 2775.23it/s]
526it [00:00, 2666.15it/s]
943it [00:00, 2520.30it/s]
 12%|██████████▌                                                                         | 1/8 [00:24<02:50, 24.33s/it]
0it [00:00, ?it/s]
247it [00:00, 2452.10it/s]
494it [00:00, 2452.09it/s]
943it [00:00, 2484.84it/s]
 25%|█████████████████████                                                               | 2/8 [00:49<02:28, 24.72s/it]
0it [00:00, ?it/s]
159it [00:00, 1578.44it/s]
413it [00:00, 1777.94it/s]
584it [00:00, 1756.96it/s]
712it [00:00, 1389.14it/s]
943it [00:00, 1570.48it/s]
 38%|███████████████████████████████▌                                                    | 3/8 [01:15<02:04, 24.87s/it]
0it [00:00, ?it/s]
229it [00:00, 2273.39it/s]
544it [00:00, 2476.21it/s]
943it [00:00, 2626.45it/s]
 50%|██████████████████████████████████████████                                          | 4/8 [01:39<01:38, 24.58s/it]
0it [00:00, ?it/s]
232it [00:00, 2303.19it/s]
472it [00:00, 2244.92it/s]
618it [00:00, 1927.54it/s]
943it [00:00, 2102.99it/s]
 62%|████████████████████████████████████████████████████▌                               | 5/8 [02:02<01:12, 24.22s/it]
0it [00:00, ?it/s]
187it [00:00, 1856.41it/s]
347it [00:00, 1766.98it/s]
473it [00:00, 1572.31it/s]
633it [00:00, 1577.13it/s]
943it [00:00, 1719.13it/s]
 75%|███████████████████████████████████████████████████████████████                     | 6/8 [02:24<00:47, 23.62s/it]
0it [00:00, ?it/s]
268it [00:00, 2660.58it/s]
534it [00:00, 2658.40it/s]
943it [00:00, 2583.15it/s]
 88%|█████████████████████████████████████████████████████████████████████████▌          | 7/8 [02:49<00:23, 23.99s/it]
0it [00:00, ?it/s]
167it [00:00, 1657.84it/s]
276it [00:00, 1413.02it/s]
368it [00:00, 1213.79it/s]
489it [00:00, 1206.38it/s]
672it [00:00, 1342.97it/s]
943it [00:00, 1444.56it/s]
100%|████████████████████████████████████████████████████████████████████████████████████| 8/8 [03:13<00:00, 24.16s/it]
Alpha RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR HR2 Reco in test Test coverage Shannon Gini
0 0.2 268.177832 211.732649 0.262672 0.166858 0.166277 0.197184 0.187661 0.203252 0.320910 0.196132 0.563378 0.580866 0.850477 0.629905 1.000000 0.060606 3.669627 0.979636
0 0.4 10.546689 7.792373 0.268505 0.172669 0.171569 0.202643 0.192489 0.212653 0.326760 0.200172 0.565148 0.583801 0.854719 0.644751 1.000000 0.064214 3.726996 0.978426
0 0.6 3.143988 2.948790 0.274655 0.180502 0.177820 0.208730 0.198176 0.222746 0.332872 0.203290 0.568872 0.587738 0.870626 0.657476 1.000000 0.065657 3.785282 0.977090
0 0.8 3.670728 3.495735 0.281972 0.189868 0.185300 0.216071 0.203541 0.236751 0.339867 0.206688 0.573729 0.592432 0.874867 0.685048 1.000000 0.070707 3.832415 0.975998
0 1.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.000000 0.077201 3.875892 0.974947
0 1.2 3.704441 3.529251 0.280912 0.193633 0.187311 0.216872 0.203004 0.240588 0.338049 0.203453 0.571830 0.594313 0.883351 0.681866 1.000000 0.085859 3.910718 0.974073
0 1.4 3.704580 3.529388 0.273595 0.190651 0.183874 0.212183 0.199464 0.239118 0.329550 0.195433 0.566171 0.592793 0.871686 0.675504 1.000000 0.107504 3.961915 0.972674
0 1.6 3.704591 3.529399 0.263097 0.186255 0.178709 0.205170 0.191094 0.232920 0.317439 0.184917 0.552349 0.590545 0.868505 0.669141 0.999576 0.156566 4.060156 0.969203
metrics=list(result.columns[[i not in ['Alpha'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Alpha', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)
Beta
from tqdm import tqdm
result=[]
for beta in tqdm([round(i,1) for i in np.arange(0,1,0.1)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=1, beta=beta)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Beta", beta)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|                                                                                           | 0/10 [00:00<?, ?it/s]
0it [00:00, ?it/s]
289it [00:00, 2869.05it/s]
943it [00:00, 3796.57it/s]
 10%|████████▎                                                                          | 1/10 [00:13<02:03, 13.71s/it]
0it [00:00, ?it/s]
462it [00:00, 4605.96it/s]
943it [00:00, 3601.05it/s]
 20%|████████████████▌                                                                  | 2/10 [00:35<02:09, 16.14s/it]
0it [00:00, ?it/s]
943it [00:00, 5872.90it/s]
 30%|████████████████████████▉                                                          | 3/10 [00:50<01:50, 15.73s/it]
0it [00:00, ?it/s]
351it [00:00, 3484.49it/s]
943it [00:00, 3341.08it/s]
 40%|█████████████████████████████████▏                                                 | 4/10 [01:05<01:33, 15.65s/it]
0it [00:00, ?it/s]
485it [00:00, 4812.21it/s]
943it [00:00, 4202.34it/s]
 50%|█████████████████████████████████████████▌                                         | 5/10 [01:23<01:21, 16.34s/it]
0it [00:00, ?it/s]
943it [00:00, 4873.77it/s]
 60%|█████████████████████████████████████████████████▊                                 | 6/10 [01:38<01:04, 16.00s/it]
0it [00:00, ?it/s]
258it [00:00, 2561.22it/s]
555it [00:00, 2666.26it/s]
943it [00:00, 2693.80it/s]
 70%|██████████████████████████████████████████████████████████                         | 7/10 [01:57<00:50, 16.73s/it]
0it [00:00, ?it/s]
943it [00:00, 5416.39it/s]
 80%|██████████████████████████████████████████████████████████████████▍                | 8/10 [02:17<00:35, 17.72s/it]
0it [00:00, ?it/s]
158it [00:00, 1568.57it/s]
295it [00:00, 1499.58it/s]
943it [00:00, 2565.22it/s]
 90%|██████████████████████████████████████████████████████████████████████████▋        | 9/10 [02:33<00:17, 17.21s/it]
0it [00:00, ?it/s]
262it [00:00, 2600.87it/s]
572it [00:00, 2728.34it/s]
943it [00:00, 2883.56it/s]
100%|██████████████████████████████████████████████████████████████████████████████████| 10/10 [02:51<00:00, 17.16s/it]
Beta RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR HR2 Reco in test Test coverage Shannon Gini
0 0.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.000000 0.077201 3.875892 0.974947
0 0.1 3.703312 3.528128 0.290138 0.197597 0.192259 0.223336 0.210944 0.246153 0.347768 0.212034 0.581038 0.596328 0.884411 0.695652 1.000000 0.085137 3.957416 0.972784
0 0.2 3.703825 3.528636 0.297137 0.201202 0.196067 0.228169 0.218026 0.252767 0.355655 0.219909 0.588904 0.598160 0.886532 0.697773 1.000000 0.094517 4.053212 0.969980
0 0.3 3.704130 3.528939 0.303499 0.204749 0.199901 0.232829 0.225107 0.260797 0.363757 0.226825 0.599969 0.599964 0.888653 0.707317 1.000000 0.105339 4.147779 0.966948
0 0.4 3.704313 3.529120 0.308908 0.208811 0.203854 0.237241 0.229614 0.266918 0.370758 0.232673 0.609385 0.602014 0.895016 0.718982 0.999894 0.132035 4.259682 0.962989
0 0.5 3.704422 3.529229 0.314316 0.211411 0.206768 0.240986 0.237124 0.273416 0.378307 0.239297 0.622792 0.603327 0.903499 0.724284 0.999046 0.168831 4.411281 0.956648
0 0.6 3.704488 3.529295 0.314634 0.206209 0.204818 0.240159 0.242489 0.273850 0.376438 0.238428 0.622042 0.600721 0.897137 0.720042 0.996394 0.212843 4.621938 0.945932
0 0.7 3.704528 3.529335 0.304136 0.187298 0.191990 0.228749 0.238305 0.256201 0.358807 0.226808 0.593897 0.591207 0.868505 0.693531 0.983033 0.256854 4.898568 0.928065
0 0.8 3.704552 3.529360 0.266384 0.147571 0.158660 0.194838 0.214485 0.209336 0.299850 0.184356 0.492852 0.571152 0.803818 0.604454 0.936373 0.341270 5.257397 0.895882
0 0.9 3.704567 3.529375 0.162354 0.076967 0.089233 0.114583 0.134657 0.113253 0.160868 0.085486 0.243590 0.535405 0.580064 0.400848 0.800106 0.415584 5.563910 0.857396
### import matplotlib.pyplot as plt

metrics=list(result.columns[[i not in ['Beta'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Beta', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)

Check sample recommendations

train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'])
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

user=random.choice(list(set(train['user'])))

train_content=pd.merge(train, items, left_on='item', right_on='id')
display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\
        .sort_values(by='rating', ascending=False)[:15])

reco = np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

# Let's ignore scores - they are not used in evaluation: 
reco_users=reco[:,:1]
reco_items=reco[:,1::2]
# Let's put them into one array
reco=np.concatenate((reco_users, reco_items), axis=1)

# Let's rebuild it user-item dataframe
recommended=[]
for row in reco:
    for rec_nb, entry in enumerate(row[1:]):
        recommended.append((row[0], rec_nb+1, entry))
recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])

recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')
recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')
user rating title genres
82 200 5 Toy Story (1995) Animation, Children's, Comedy
22169 200 5 Groundhog Day (1993) Comedy, Romance
41229 200 5 Star Trek: Generations (1994) Action, Adventure, Sci-Fi
40846 200 5 Miracle on 34th Street (1994) Drama
38062 200 5 Beauty and the Beast (1991) Animation, Children's, Musical
37534 200 5 Aladdin (1992) Animation, Children's, Comedy, Musical
36306 200 5 Silence of the Lambs, The (1991) Drama, Thriller
33862 200 5 Independence Day (ID4) (1996) Action, Sci-Fi, War
32487 200 5 Phenomenon (1996) Drama, Romance
32420 200 5 Spawn (1997) Action, Adventure, Sci-Fi, Thriller
31448 200 5 Seven (Se7en) (1995) Crime, Thriller
30214 200 5 Star Trek: First Contact (1996) Action, Adventure, Sci-Fi
27813 200 5 Day the Earth Stood Still, The (1951) Drama, Sci-Fi
27483 200 5 Young Frankenstein (1974) Comedy, Horror
27366 200 5 Empire Strikes Back, The (1980) Action, Adventure, Drama, Romance, Sci-Fi, War
user rec_nb title genres
2710 200.0 1 Return of the Jedi (1983) Action, Adventure, Romance, Sci-Fi, War
7001 200.0 2 Fargo (1996) Crime, Drama, Thriller
2272 200.0 3 Godfather, The (1972) Action, Crime, Drama
6393 200.0 4 Pulp Fiction (1994) Crime, Drama
7714 200.0 5 Princess Bride, The (1987) Action, Adventure, Comedy, Romance
3434 200.0 6 Jerry Maguire (1996) Drama, Romance
9101 200.0 7 Mission: Impossible (1996) Action, Adventure, Mystery
4491 200.0 8 Air Force One (1997) Action, Thriller
2026 200.0 9 Back to the Future (1985) Comedy, Sci-Fi
8048 200.0 10 Monty Python and the Holy Grail (1974) Comedy

project task 6: generate recommendations of RP3Beta for hiperparameters found to optimize recall

# use better values than (1,0) for alpha and beta
# if you want you can also modify the model to consider different weights (we took as weights user ratings, maybe take ones or squares of ratings instead)
# save the outptut in 'Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_RP3Beta_reco.csv'
model=RP3Beta()
model.fit(train_ui, alpha=1.2, beta=0.5)
top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', index=False, header=False)
import evaluation_measures as ev
estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 3493.16it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR HR2 Reco in test Test coverage Shannon Gini
0 3.70458 3.529388 0.302969 0.199894 0.197705 0.231449 0.231438 0.263787 0.362426 0.226406 0.601293 0.597526 0.889714 0.700954 0.996819 0.212121 4.509878 0.951344

project task 7 (optional): implement graph-based model of your choice

# for example change length of paths in RP3beta
# save the outptut in 'Recommendations generated/ml-100k/Self_GraphTask_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_GraphTask_reco.csv'