WSS-project/P4. Matrix Factorization.ipynb
2021-05-29 13:08:49 +02:00

76 KiB

Self made SVD

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
import matplotlib.pyplot as plt

train_read = pd.read_csv("./Datasets/ml-100k/train.csv", sep="\t", header=None)
test_read = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)
(
    train_ui,
    test_ui,
    user_code_id,
    user_id_code,
    item_code_id,
    item_id_code,
) = helpers.data_to_csr(train_read, test_read)
# Done similarly to https://github.com/albertauyeung/matrix-factorization-in-python
from tqdm import tqdm


class SVD:
    def __init__(self, train_ui, learning_rate, regularization, nb_factors, iterations):
        self.train_ui = train_ui
        self.uir = list(
            zip(*[train_ui.nonzero()[0], train_ui.nonzero()[1], train_ui.data])
        )

        self.learning_rate = learning_rate
        self.regularization = regularization
        self.iterations = iterations
        self.nb_users, self.nb_items = train_ui.shape
        self.nb_ratings = train_ui.nnz
        self.nb_factors = nb_factors

        self.Pu = np.random.normal(
            loc=0, scale=1.0 / self.nb_factors, size=(self.nb_users, self.nb_factors)
        )
        self.Qi = np.random.normal(
            loc=0, scale=1.0 / self.nb_factors, size=(self.nb_items, self.nb_factors)
        )

    def train(self, test_ui=None):
        if test_ui != None:
            self.test_uir = list(
                zip(*[test_ui.nonzero()[0], test_ui.nonzero()[1], test_ui.data])
            )

        self.learning_process = []
        pbar = tqdm(range(self.iterations))
        for i in pbar:
            pbar.set_description(
                f"Epoch {i} RMSE: {self.learning_process[-1][1] if i>0 else 0}. Training epoch {i+1}..."
            )
            np.random.shuffle(self.uir)
            self.sgd(self.uir)
            if test_ui == None:
                self.learning_process.append([i + 1, self.RMSE_total(self.uir)])
            else:
                self.learning_process.append(
                    [i + 1, self.RMSE_total(self.uir), self.RMSE_total(self.test_uir)]
                )

    def sgd(self, uir):

        for u, i, score in uir:
            # Computer prediction and error
            prediction = self.get_rating(u, i)
            e = score - prediction

            # Update user and item latent feature matrices
            Pu_update = self.learning_rate * (
                e * self.Qi[i] - self.regularization * self.Pu[u]
            )
            Qi_update = self.learning_rate * (
                e * self.Pu[u] - self.regularization * self.Qi[i]
            )

            self.Pu[u] += Pu_update
            self.Qi[i] += Qi_update

    def get_rating(self, u, i):
        prediction = self.Pu[u].dot(self.Qi[i].T)
        return prediction

    def RMSE_total(self, uir):
        RMSE = 0
        for u, i, score in uir:
            prediction = self.get_rating(u, i)
            RMSE += (score - prediction) ** 2
        return np.sqrt(RMSE / len(uir))

    def estimations(self):
        self.estimations = np.dot(self.Pu, self.Qi.T)

    def recommend(self, user_code_id, item_code_id, topK=10):

        top_k = defaultdict(list)
        for nb_user, user_scores in enumerate(self.estimations):

            user_rated = self.train_ui.indices[
                self.train_ui.indptr[nb_user] : self.train_ui.indptr[nb_user + 1]
            ]
            for item, score in enumerate(user_scores):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result = []
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid] + list(chain(*item_scores[:topK])))
        return result

    def estimate(self, user_code_id, item_code_id, test_ui):
        result = []
        for user, item in zip(*test_ui.nonzero()):
            result.append(
                [
                    user_code_id[user],
                    item_code_id[item],
                    self.estimations[user, item]
                    if not np.isnan(self.estimations[user, item])
                    else 1,
                ]
            )
        return result
model = SVD(
    train_ui, learning_rate=0.005, regularization=0.02, nb_factors=100, iterations=40
)
model.train(test_ui)
Epoch 39 RMSE: 0.7489999966900885. Training epoch 40...: 100%|██████████| 40/40 [01:02<00:00,  1.57s/it]
df = pd.DataFrame(model.learning_process).iloc[:, :2]
df.columns = ["epoch", "train_RMSE"]
plt.plot("epoch", "train_RMSE", data=df, color="blue")
plt.legend()
<matplotlib.legend.Legend at 0x7ff52c7e5100>
df = pd.DataFrame(
    model.learning_process[10:], columns=["epoch", "train_RMSE", "test_RMSE"]
)
plt.plot("epoch", "train_RMSE", data=df, color="blue")
plt.plot("epoch", "test_RMSE", data=df, color="green", linestyle="dashed")
plt.legend()
<matplotlib.legend.Legend at 0x7ff52f336dc0>

Saving and evaluating recommendations

model.estimations()

top_n = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv(
    "Recommendations generated/ml-100k/Self_SVD_reco.csv", index=False, header=False
)

estimations = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv(
    "Recommendations generated/ml-100k/Self_SVD_estimations.csv",
    index=False,
    header=False,
)
import evaluation_measures as ev

estimations_df = pd.read_csv(
    "Recommendations generated/ml-100k/Self_SVD_estimations.csv", header=None
)
reco = np.loadtxt("Recommendations generated/ml-100k/Self_SVD_reco.csv", delimiter=",")

ev.evaluate(
    test=pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None),
    estimations_df=estimations_df,
    reco=reco,
    super_reactions=[4, 5],
)
943it [00:00, 8683.10it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.914393 0.717199 0.101697 0.042334 0.051787 0.068811 0.092489 0.07236 0.104839 0.04897 0.196117 0.517889 0.480382 0.867338 0.147186 3.852545 0.972694
dir_path = "Recommendations generated/ml-100k/"
super_reactions = [4, 5]
test = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 8505.85it/s]
943it [00:00, 9544.72it/s]
943it [00:00, 9154.80it/s]
943it [00:00, 8282.66it/s]
943it [00:00, 8432.23it/s]
943it [00:00, 9601.30it/s]
943it [00:00, 9158.89it/s]
943it [00:00, 12283.59it/s]
943it [00:00, 9500.43it/s]
943it [00:00, 10085.91it/s]
943it [00:00, 10260.90it/s]
943it [00:00, 9691.20it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_SVD 0.950347 0.749312 0.100636 0.050514 0.055794 0.070753 0.091202 0.082734 0.114054 0.053200 0.248803 0.521983 0.517497 0.992153 0.210678 4.418683 0.952848
0 Self_SVD 0.914393 0.717199 0.101697 0.042334 0.051787 0.068811 0.092489 0.072360 0.104839 0.048970 0.196117 0.517889 0.480382 0.867338 0.147186 3.852545 0.972694
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Ready_SVDBiased 0.939472 0.739816 0.085896 0.036073 0.043528 0.057643 0.077039 0.057463 0.097753 0.045546 0.219839 0.514709 0.431601 0.997455 0.168831 4.217578 0.962577
0 Ready_Random 1.521845 1.225949 0.047190 0.020753 0.024810 0.032269 0.029506 0.023707 0.050075 0.018728 0.121957 0.506893 0.329799 0.986532 0.184704 5.099706 0.907217
0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 0.499885 0.154825 0.402333 0.434343 5.133650 0.877999
0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 0.496441 0.007423 0.602121 0.010823 2.089186 0.995706
0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380
0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327

Embeddings

item = random.choice(list(set(train_ui.indices)))

embeddings_norm = (
    model.Qi / np.linalg.norm(model.Qi, axis=1)[:, None]
)  # we do not mean-center here
# omitting normalization also makes sense, but items with a greater magnitude will be recommended more often

similarity_scores = np.dot(embeddings_norm, embeddings_norm[item].T)
top_similar_items = pd.DataFrame(
    enumerate(similarity_scores), columns=["code", "score"]
).sort_values(by=["score"], ascending=[False])[:10]

top_similar_items["item_id"] = top_similar_items["code"].apply(
    lambda x: item_code_id[x]
)

items = pd.read_csv("./Datasets/ml-100k/movies.csv")

result = pd.merge(top_similar_items, items, left_on="item_id", right_on="id")

result
code score item_id id title genres
0 321 1.000000 322 322 Murder at 1600 (1997) Mystery, Thriller
1 983 0.902748 984 984 Shadow Conspiracy (1997) Thriller
2 985 0.894696 986 986 Turbulence (1997) Thriller
3 778 0.890524 779 779 Drop Zone (1994) Action
4 686 0.889220 687 687 McHale's Navy (1997) Comedy, War
5 331 0.887596 332 332 Kiss the Girls (1997) Crime, Drama, Thriller
6 987 0.886547 988 988 Beautician and the Beast, The (1997) Comedy, Romance
7 1039 0.882845 1040 1040 Two if by Sea (1996) Comedy, Romance
8 1022 0.882782 1023 1023 Fathers' Day (1997) Comedy
9 929 0.877662 930 930 Chain Reaction (1996) Action, Adventure, Thriller

project task 5: implement SVD on top baseline (as it is in Surprise library)

# making changes to our implementation by considering additional parameters in the gradient descent procedure
# seems to be the fastest option
# please save the output in 'Recommendations generated/ml-100k/Self_SVDBaseline_reco.csv' and
# 'Recommendations generated/ml-100k/Self_SVDBaseline_estimations.csv'

# link to the relevant Surprise documentation https://surprise.readthedocs.io/en/stable/matrix_factorization.html#matrix-factorization-based-algorithms

Ready-made SVD - Surprise implementation

SVD

import helpers
import surprise as sp

algo = sp.SVD(biased=False)  # to use unbiased version

helpers.ready_made(
    algo,
    reco_path="Recommendations generated/ml-100k/Ready_SVD_reco.csv",
    estimations_path="Recommendations generated/ml-100k/Ready_SVD_estimations.csv",
)
Generating predictions...
Generating top N recommendations...
Generating predictions...

SVD biased - on top baseline

algo = sp.SVD()  # default is biased=True

helpers.ready_made(
    algo,
    reco_path="Recommendations generated/ml-100k/Ready_SVDBiased_reco.csv",
    estimations_path="Recommendations generated/ml-100k/Ready_SVDBiased_estimations.csv",
)
Generating predictions...
Generating top N recommendations...
Generating predictions...
dir_path = "Recommendations generated/ml-100k/"
super_reactions = [4, 5]
test = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 11456.53it/s]
943it [00:00, 11932.50it/s]
943it [00:00, 10853.07it/s]
943it [00:00, 9426.44it/s]
943it [00:00, 8757.09it/s]
943it [00:00, 9999.67it/s]
943it [00:00, 11323.49it/s]
943it [00:00, 9764.72it/s]
943it [00:00, 9692.41it/s]
943it [00:00, 9052.77it/s]
943it [00:00, 8645.18it/s]
943it [00:00, 10594.54it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_SVD 0.951652 0.750975 0.096394 0.047252 0.052870 0.067257 0.085515 0.074754 0.109578 0.051562 0.235567 0.520341 0.496288 0.995546 0.208514 4.455755 0.951624
0 Self_SVD 0.914393 0.717199 0.101697 0.042334 0.051787 0.068811 0.092489 0.072360 0.104839 0.048970 0.196117 0.517889 0.480382 0.867338 0.147186 3.852545 0.972694
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Ready_SVDBiased 0.940413 0.739571 0.086002 0.035478 0.043196 0.057507 0.075751 0.053460 0.094897 0.043361 0.209124 0.514405 0.428420 0.997349 0.177489 4.212509 0.962656
0 Ready_Random 1.521845 1.225949 0.047190 0.020753 0.024810 0.032269 0.029506 0.023707 0.050075 0.018728 0.121957 0.506893 0.329799 0.986532 0.184704 5.099706 0.907217
0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 0.499885 0.154825 0.402333 0.434343 5.133650 0.877999
0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487
0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 0.496441 0.007423 0.602121 0.010823 2.089186 0.995706
0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380
0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327