WSS-project/P2. Evaluation.ipynb
2021-06-12 10:56:22 +02:00

1775 lines
56 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare test set"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"from tqdm import tqdm\n",
"\n",
"# In evaluation we do not load train set - it is not needed\n",
"test = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"test.columns = [\"user\", \"item\", \"rating\", \"timestamp\"]\n",
"\n",
"test[\"user_code\"] = test[\"user\"].astype(\"category\").cat.codes\n",
"test[\"item_code\"] = test[\"item\"].astype(\"category\").cat.codes\n",
"\n",
"user_code_id = dict(enumerate(test[\"user\"].astype(\"category\").cat.categories))\n",
"user_id_code = dict((v, k) for k, v in user_code_id.items())\n",
"item_code_id = dict(enumerate(test[\"item\"].astype(\"category\").cat.categories))\n",
"item_id_code = dict((v, k) for k, v in item_code_id.items())\n",
"\n",
"test_ui = sparse.csr_matrix((test[\"rating\"], (test[\"user_code\"], test[\"item_code\"])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimations metrics"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"estimations_df = pd.read_csv(\n",
" \"Recommendations generated/ml-100k/Ready_Baseline_estimations.csv\", header=None\n",
")\n",
"estimations_df.columns = [\"user\", \"item\", \"score\"]\n",
"\n",
"estimations_df[\"user_code\"] = [user_id_code[user] for user in estimations_df[\"user\"]]\n",
"estimations_df[\"item_code\"] = [item_id_code[item] for item in estimations_df[\"item\"]]\n",
"estimations = sparse.csr_matrix(\n",
" (\n",
" estimations_df[\"score\"],\n",
" (estimations_df[\"user_code\"], estimations_df[\"item_code\"]),\n",
" ),\n",
" shape=test_ui.shape,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def estimations_metrics(test_ui, estimations):\n",
" result = []\n",
"\n",
" RMSE = (np.sum((estimations.data - test_ui.data) ** 2) / estimations.nnz) ** (1 / 2)\n",
" result.append([\"RMSE\", RMSE])\n",
"\n",
" MAE = np.sum(abs(estimations.data - test_ui.data)) / estimations.nnz\n",
" result.append([\"MAE\", MAE])\n",
"\n",
" df_result = (pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns = list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE\n",
"0 0.949459 0.752487"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of error (in the laboratories) you might have to switch to the other version of pandas\n",
"# try !pip3 install pandas=='1.0.3' (or pip if you use python 2) and restart the kernel\n",
"\n",
"estimations_metrics(test_ui, estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ranking metrics"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[663, 475, 62, ..., 472, 269, 503],\n",
" [ 48, 313, 475, ..., 591, 175, 466],\n",
" [351, 313, 475, ..., 591, 175, 466],\n",
" ...,\n",
" [259, 313, 475, ..., 11, 591, 175],\n",
" [ 33, 313, 475, ..., 11, 591, 175],\n",
" [ 77, 313, 475, ..., 11, 591, 175]])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"reco = np.loadtxt(\n",
" \"Recommendations generated/ml-100k/Ready_Baseline_reco.csv\", delimiter=\",\"\n",
")\n",
"# Let's ignore scores - they are not used in evaluation:\n",
"users = reco[:, :1]\n",
"items = reco[:, 1::2]\n",
"# Let's use inner ids instead of real ones\n",
"users = np.vectorize(lambda x: user_id_code.setdefault(x, -1))(users)\n",
"items = np.vectorize(lambda x: item_id_code.setdefault(x, -1))(items)\n",
"reco = np.concatenate((users, items), axis=1)\n",
"reco"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def ranking_metrics(test_ui, reco, super_reactions=[], topK=10):\n",
"\n",
" nb_items = test_ui.shape[1]\n",
" (\n",
" relevant_users,\n",
" super_relevant_users,\n",
" prec,\n",
" rec,\n",
" F_1,\n",
" F_05,\n",
" prec_super,\n",
" rec_super,\n",
" ndcg,\n",
" mAP,\n",
" MRR,\n",
" LAUC,\n",
" HR,\n",
" ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)\n",
"\n",
" cg = 1.0 / np.log2(np.arange(2, topK + 2))\n",
" cg_sum = np.cumsum(cg)\n",
"\n",
" for (nb_user, user) in tqdm(enumerate(reco[:, 0])):\n",
" u_rated_items = test_ui.indices[test_ui.indptr[user] : test_ui.indptr[user + 1]]\n",
" nb_u_rated_items = len(u_rated_items)\n",
" if (\n",
" nb_u_rated_items > 0\n",
" ): # skip users with no items in test set (still possible that there will be no super items)\n",
" relevant_users += 1\n",
"\n",
" u_super_items = u_rated_items[\n",
" np.vectorize(lambda x: x in super_reactions)(\n",
" test_ui.data[test_ui.indptr[user] : test_ui.indptr[user + 1]]\n",
" )\n",
" ]\n",
" # more natural seems u_super_items=[item for item in u_rated_items if test_ui[user,item] in super_reactions]\n",
" # but accesing test_ui[user,item] is expensive -we should avoid doing it\n",
" if len(u_super_items) > 0:\n",
" super_relevant_users += 1\n",
"\n",
" user_successes = np.zeros(topK)\n",
" nb_user_successes = 0\n",
" user_super_successes = np.zeros(topK)\n",
" nb_user_super_successes = 0\n",
"\n",
" # evaluation\n",
" for (item_position, item) in enumerate(reco[nb_user, 1 : topK + 1]):\n",
" if item in u_rated_items:\n",
" user_successes[item_position] = 1\n",
" nb_user_successes += 1\n",
" if item in u_super_items:\n",
" user_super_successes[item_position] = 1\n",
" nb_user_super_successes += 1\n",
"\n",
" prec_u = nb_user_successes / topK\n",
" prec += prec_u\n",
"\n",
" rec_u = nb_user_successes / nb_u_rated_items\n",
" rec += rec_u\n",
"\n",
" F_1 += 2 * (prec_u * rec_u) / (prec_u + rec_u) if prec_u + rec_u > 0 else 0\n",
" F_05 += (\n",
" (0.5 ** 2 + 1) * (prec_u * rec_u) / (0.5 ** 2 * prec_u + rec_u)\n",
" if prec_u + rec_u > 0\n",
" else 0\n",
" )\n",
"\n",
" prec_super += nb_user_super_successes / topK\n",
" rec_super += nb_user_super_successes / max(\n",
" len(u_super_items), 1\n",
" ) # to set 0 if no super items\n",
" ndcg += np.dot(user_successes, cg) / cg_sum[min(topK, nb_u_rated_items) - 1]\n",
"\n",
" cumsum_successes = np.cumsum(user_successes)\n",
" mAP += np.dot(\n",
" cumsum_successes / np.arange(1, topK + 1), user_successes\n",
" ) / min(topK, nb_u_rated_items)\n",
" MRR += (\n",
" 1 / (user_successes.nonzero()[0][0] + 1)\n",
" if user_successes.nonzero()[0].size > 0\n",
" else 0\n",
" )\n",
" LAUC += (\n",
" np.dot(cumsum_successes, 1 - user_successes)\n",
" + (nb_user_successes + nb_u_rated_items)\n",
" / 2\n",
" * ((nb_items - nb_u_rated_items) - (topK - nb_user_successes))\n",
" ) / ((nb_items - nb_u_rated_items) * nb_u_rated_items)\n",
"\n",
" HR += nb_user_successes > 0\n",
"\n",
" result = []\n",
" result.append((\"precision\", prec / relevant_users))\n",
" result.append((\"recall\", rec / relevant_users))\n",
" result.append((\"F_1\", F_1 / relevant_users))\n",
" result.append((\"F_05\", F_05 / relevant_users))\n",
" result.append((\"precision_super\", prec_super / super_relevant_users))\n",
" result.append((\"recall_super\", rec_super / super_relevant_users))\n",
" result.append((\"NDCG\", ndcg / relevant_users))\n",
" result.append((\"mAP\", mAP / relevant_users))\n",
" result.append((\"MRR\", MRR / relevant_users))\n",
" result.append((\"LAUC\", LAUC / relevant_users))\n",
" result.append((\"HR\", HR / relevant_users))\n",
"\n",
" df_result = (pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns = list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 9434.06it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.09141</td>\n",
" <td>0.037652</td>\n",
" <td>0.04603</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" precision recall F_1 F_05 precision_super recall_super \\\n",
"0 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 \n",
"\n",
" NDCG mAP MRR LAUC HR \n",
"0 0.095957 0.043178 0.198193 0.515501 0.437964 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ranking_metrics(test_ui, reco, super_reactions=[4, 5], topK=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Diversity metrics"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def diversity_metrics(test_ui, reco, topK=10):\n",
"\n",
" frequencies = defaultdict(int)\n",
"\n",
" # let's assign 0 to all items in test set\n",
" for item in list(set(test_ui.indices)):\n",
" frequencies[item] = 0\n",
"\n",
" # counting frequencies\n",
" for item in reco[:, 1:].flat:\n",
" frequencies[item] += 1\n",
"\n",
" nb_reco_outside_test = frequencies[-1]\n",
" del frequencies[-1]\n",
"\n",
" frequencies = np.array(list(frequencies.values()))\n",
"\n",
" nb_rec_items = len(frequencies[frequencies > 0])\n",
" nb_reco_inside_test = np.sum(frequencies)\n",
"\n",
" frequencies = frequencies / np.sum(frequencies)\n",
" frequencies = np.sort(frequencies)\n",
"\n",
" with np.errstate(\n",
" divide=\"ignore\"\n",
" ): # let's put zeros put items with 0 frequency and ignore division warning\n",
" log_frequencies = np.nan_to_num(np.log(frequencies), posinf=0, neginf=0)\n",
"\n",
" result = []\n",
" result.append(\n",
" (\n",
" \"Reco in test\",\n",
" nb_reco_inside_test / (nb_reco_inside_test + nb_reco_outside_test),\n",
" )\n",
" )\n",
" result.append((\"Test coverage\", nb_rec_items / test_ui.shape[1]))\n",
" result.append((\"Shannon\", -np.dot(frequencies, log_frequencies)))\n",
" result.append(\n",
" (\n",
" \"Gini\",\n",
" np.dot(frequencies, np.arange(1 - len(frequencies), len(frequencies), 2))\n",
" / (len(frequencies) - 1),\n",
" )\n",
" )\n",
"\n",
" df_result = (pd.DataFrame(list(zip(*result))[1])).T\n",
" df_result.columns = list(zip(*result))[0]\n",
" return df_result"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Reco in test Test coverage Shannon Gini\n",
"0 1.0 0.033911 2.836513 0.991139"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in case of errors try !pip3 install numpy==1.18.4 (or pip if you use python 2) and restart the kernel\n",
"\n",
"x = diversity_metrics(test_ui, reco, topK=10)\n",
"x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# To be used in other notebooks"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 12952.59it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.09141</td>\n",
" <td>0.037652</td>\n",
" <td>0.04603</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>0.126193</td>\n",
" <td>1.0</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 0.949459 0.752487 0.09141 0.037652 0.04603 0.061286 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 \n",
"\n",
" HR HitRate2 HitRate3 Reco in test Test coverage Shannon \\\n",
"0 0.437964 0.239661 0.126193 1.0 0.033911 2.836513 \n",
"\n",
" Gini \n",
"0 0.991139 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"\n",
"estimations_df = pd.read_csv(\n",
" \"Recommendations generated/ml-100k/Ready_Baseline_estimations.csv\", header=None\n",
")\n",
"reco = np.loadtxt(\n",
" \"Recommendations generated/ml-100k/Ready_Baseline_reco.csv\", delimiter=\",\"\n",
")\n",
"\n",
"ev.evaluate(\n",
" test=pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None),\n",
" estimations_df=estimations_df,\n",
" reco=reco,\n",
" super_reactions=[4, 5],\n",
")\n",
"# also you can just type ev.evaluate_all(estimations_df, reco) - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 13130.52it/s]\n",
"943it [00:00, 12777.31it/s]\n",
"943it [00:00, 13513.65it/s]\n",
"943it [00:00, 13323.06it/s]\n",
"943it [00:00, 13507.69it/s]\n",
"943it [00:00, 13697.48it/s]\n"
]
}
],
"source": [
"dir_path = \"Recommendations generated/ml-100k/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"\n",
"df = ev.evaluate_all(test, dir_path, super_reactions)\n",
"# also you can just type ev.evaluate_all() - I put above values as default"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Random</td>\n",
" <td>1.516512</td>\n",
" <td>1.217214</td>\n",
" <td>0.045599</td>\n",
" <td>0.021001</td>\n",
" <td>0.024136</td>\n",
" <td>0.031226</td>\n",
" <td>0.028541</td>\n",
" <td>0.022057</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_IKNN</td>\n",
" <td>1.018363</td>\n",
" <td>0.808793</td>\n",
" <td>0.000318</td>\n",
" <td>0.000108</td>\n",
" <td>0.000140</td>\n",
" <td>0.000189</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Ready_Random 1.516512 1.217214 0.045599 0.021001 0.024136 \n",
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super \n",
"0 0.141584 0.130472 0.137473 \n",
"0 0.061286 0.079614 0.056463 \n",
"0 0.031226 0.028541 0.022057 \n",
"0 0.000481 0.000644 0.000223 \n",
"0 0.000463 0.000644 0.000189 \n",
"0 0.000189 0.000000 0.000000 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:, :9]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>0.290562</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>0.126193</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Random</td>\n",
" <td>0.050154</td>\n",
" <td>0.019000</td>\n",
" <td>0.125089</td>\n",
" <td>0.507013</td>\n",
" <td>0.327678</td>\n",
" <td>0.093319</td>\n",
" <td>0.026511</td>\n",
" <td>0.988017</td>\n",
" <td>0.192641</td>\n",
" <td>5.141246</td>\n",
" <td>0.903763</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopRated</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_IKNN</td>\n",
" <td>0.000214</td>\n",
" <td>0.000037</td>\n",
" <td>0.000368</td>\n",
" <td>0.496391</td>\n",
" <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n",
" <td>0.115440</td>\n",
" <td>4.174741</td>\n",
" <td>0.965327</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model NDCG mAP MRR LAUC HR \\\n",
"0 Self_TopPop 0.214651 0.111707 0.400939 0.555546 0.765642 \n",
"0 Ready_Baseline 0.095957 0.043178 0.198193 0.515501 0.437964 \n",
"0 Ready_Random 0.050154 0.019000 0.125089 0.507013 0.327678 \n",
"0 Self_TopRated 0.001043 0.000335 0.003348 0.496433 0.009544 \n",
"0 Self_BaselineUI 0.000752 0.000168 0.001677 0.496424 0.009544 \n",
"0 Self_IKNN 0.000214 0.000037 0.000368 0.496391 0.003181 \n",
"\n",
" HitRate2 HitRate3 Reco in test Test coverage Shannon Gini \n",
"0 0.492047 0.290562 1.000000 0.038961 3.159079 0.987317 \n",
"0 0.239661 0.126193 1.000000 0.033911 2.836513 0.991139 \n",
"0 0.093319 0.026511 0.988017 0.192641 5.141246 0.903763 \n",
"0 0.000000 0.000000 0.699046 0.005051 1.945910 0.995669 \n",
"0 0.000000 0.000000 0.600530 0.005051 1.803126 0.996380 \n",
"0 0.000000 0.000000 0.392153 0.115440 4.174741 0.965327 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:, np.append(0, np.arange(9, df.shape[1]))]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check metrics on toy dataset"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"3it [00:00, ?it/s]\n",
"3it [00:00, ?it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>1.612452</td>\n",
" <td>1.400</td>\n",
" <td>0.444444</td>\n",
" <td>0.888889</td>\n",
" <td>0.555556</td>\n",
" <td>0.478632</td>\n",
" <td>0.333333</td>\n",
" <td>0.75</td>\n",
" <td>0.676907</td>\n",
" <td>0.574074</td>\n",
" <td>0.611111</td>\n",
" <td>0.638889</td>\n",
" <td>1.0</td>\n",
" <td>0.333333</td>\n",
" <td>0.0</td>\n",
" <td>0.888889</td>\n",
" <td>0.8</td>\n",
" <td>1.386294</td>\n",
" <td>0.250000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineIU</td>\n",
" <td>1.648337</td>\n",
" <td>1.575</td>\n",
" <td>0.444444</td>\n",
" <td>0.888889</td>\n",
" <td>0.555556</td>\n",
" <td>0.478632</td>\n",
" <td>0.333333</td>\n",
" <td>0.75</td>\n",
" <td>0.720550</td>\n",
" <td>0.629630</td>\n",
" <td>0.666667</td>\n",
" <td>0.722222</td>\n",
" <td>1.0</td>\n",
" <td>0.333333</td>\n",
" <td>0.0</td>\n",
" <td>0.777778</td>\n",
" <td>0.8</td>\n",
" <td>1.351784</td>\n",
" <td>0.357143</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 F_05 \\\n",
"0 Self_BaselineUI 1.612452 1.400 0.444444 0.888889 0.555556 0.478632 \n",
"0 Self_BaselineIU 1.648337 1.575 0.444444 0.888889 0.555556 0.478632 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC HR \\\n",
"0 0.333333 0.75 0.676907 0.574074 0.611111 0.638889 1.0 \n",
"0 0.333333 0.75 0.720550 0.629630 0.666667 0.722222 1.0 \n",
"\n",
" HitRate2 HitRate3 Reco in test Test coverage Shannon Gini \n",
"0 0.333333 0.0 0.888889 0.8 1.386294 0.250000 \n",
"0 0.333333 0.0 0.777778 0.8 1.351784 0.357143 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]], dtype=int64)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test data:\n"
]
},
{
"data": {
"text/plain": [
"matrix([[0, 0, 0, 0, 0, 0, 3, 0],\n",
" [0, 0, 0, 0, 5, 0, 0, 0],\n",
" [5, 0, 4, 0, 0, 0, 0, 2]], dtype=int64)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recommendations:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>30</td>\n",
" <td>5.0</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" <td>60</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>40</td>\n",
" <td>3.0</td>\n",
" <td>60</td>\n",
" <td>2.0</td>\n",
" <td>70</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>20</td>\n",
" <td>40</td>\n",
" <td>5.0</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" <td>70</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 6\n",
"0 0 30 5.0 20 4.0 60 4.0\n",
"1 10 40 3.0 60 2.0 70 2.0\n",
"2 20 40 5.0 20 4.0 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimations:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>item</th>\n",
" <th>est_score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>60</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>40</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>20</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>20</td>\n",
" <td>20</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20</td>\n",
" <td>70</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user item est_score\n",
"0 0 60 4.0\n",
"1 10 40 3.0\n",
"2 20 0 3.0\n",
"3 20 20 4.0\n",
"4 20 70 4.0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import helpers\n",
"\n",
"dir_path = \"Recommendations generated/toy-example/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv(\"./Datasets/toy-example/test.csv\", sep=\"\\t\", header=None)\n",
"\n",
"display(ev.evaluate_all(test, dir_path, super_reactions, topK=3))\n",
"# also you can just type ev.evaluate_all() - I put above values as default\n",
"\n",
"toy_train_read = pd.read_csv(\n",
" \"./Datasets/toy-example/train.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"toy_test_read = pd.read_csv(\n",
" \"./Datasets/toy-example/test.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"reco = pd.read_csv(\n",
" \"Recommendations generated/toy-example/Self_BaselineUI_reco.csv\", header=None\n",
")\n",
"estimations = pd.read_csv(\n",
" \"Recommendations generated/toy-example/Self_BaselineUI_estimations.csv\",\n",
" names=[\"user\", \"item\", \"est_score\"],\n",
")\n",
"(\n",
" toy_train_ui,\n",
" toy_test_ui,\n",
" toy_user_code_id,\n",
" toy_user_id_code,\n",
" toy_item_code_id,\n",
" toy_item_id_code,\n",
") = helpers.data_to_csr(toy_train_read, toy_test_read)\n",
"\n",
"print(\"Training data:\")\n",
"display(toy_train_ui.todense())\n",
"\n",
"print(\"Test data:\")\n",
"display(toy_test_ui.todense())\n",
"\n",
"print(\"Recommendations:\")\n",
"display(reco)\n",
"\n",
"print(\"Estimations:\")\n",
"display(estimations)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sample recommendations"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what user rated high:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rating</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>36652</th>\n",
" <td>735</td>\n",
" <td>5</td>\n",
" <td>Lone Star (1996)</td>\n",
" <td>Drama, Mystery</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3143</th>\n",
" <td>735</td>\n",
" <td>5</td>\n",
" <td>Star Wars (1977)</td>\n",
" <td>Action, Adventure, Romance, Sci-Fi, War</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52919</th>\n",
" <td>735</td>\n",
" <td>5</td>\n",
" <td>Kolya (1996)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>275</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Toy Story (1995)</td>\n",
" <td>Animation, Children's, Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41134</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Trainspotting (1996)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28094</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Face/Off (1997)</td>\n",
" <td>Action, Sci-Fi, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26548</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Everyone Says I Love You (1996)</td>\n",
" <td>Comedy, Musical, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26186</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Air Force One (1997)</td>\n",
" <td>Action, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25791</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Dead Man Walking (1995)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51948</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Mighty Aphrodite (1995)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52778</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Fly Away Home (1996)</td>\n",
" <td>Adventure, Children's</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20966</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Secrets &amp; Lies (1996)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19301</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Scream (1996)</td>\n",
" <td>Horror, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54450</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Sense and Sensibility (1995)</td>\n",
" <td>Drama, Romance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17177</th>\n",
" <td>735</td>\n",
" <td>4</td>\n",
" <td>Leaving Las Vegas (1995)</td>\n",
" <td>Drama, Romance</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user rating title \\\n",
"36652 735 5 Lone Star (1996) \n",
"3143 735 5 Star Wars (1977) \n",
"52919 735 5 Kolya (1996) \n",
"275 735 4 Toy Story (1995) \n",
"41134 735 4 Trainspotting (1996) \n",
"28094 735 4 Face/Off (1997) \n",
"26548 735 4 Everyone Says I Love You (1996) \n",
"26186 735 4 Air Force One (1997) \n",
"25791 735 4 Dead Man Walking (1995) \n",
"51948 735 4 Mighty Aphrodite (1995) \n",
"52778 735 4 Fly Away Home (1996) \n",
"20966 735 4 Secrets & Lies (1996) \n",
"19301 735 4 Scream (1996) \n",
"54450 735 4 Sense and Sensibility (1995) \n",
"17177 735 4 Leaving Las Vegas (1995) \n",
"\n",
" genres \n",
"36652 Drama, Mystery \n",
"3143 Action, Adventure, Romance, Sci-Fi, War \n",
"52919 Comedy \n",
"275 Animation, Children's, Comedy \n",
"41134 Drama \n",
"28094 Action, Sci-Fi, Thriller \n",
"26548 Comedy, Musical, Romance \n",
"26186 Action, Thriller \n",
"25791 Drama \n",
"51948 Comedy \n",
"52778 Adventure, Children's \n",
"20966 Drama \n",
"19301 Horror, Thriller \n",
"54450 Drama, Romance \n",
"17177 Drama, Romance "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here is what we recommend:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>user</th>\n",
" <th>rec_nb</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>733</th>\n",
" <td>735.0</td>\n",
" <td>1</td>\n",
" <td>Great Day in Harlem, A (1994)</td>\n",
" <td>Documentary</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1675</th>\n",
" <td>735.0</td>\n",
" <td>2</td>\n",
" <td>Tough and Deadly (1995)</td>\n",
" <td>Action, Drama, Thriller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2617</th>\n",
" <td>735.0</td>\n",
" <td>3</td>\n",
" <td>Aiqing wansui (1994)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3559</th>\n",
" <td>735.0</td>\n",
" <td>4</td>\n",
" <td>Delta of Venus (1994)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4501</th>\n",
" <td>735.0</td>\n",
" <td>5</td>\n",
" <td>Someone Else's America (1995)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5443</th>\n",
" <td>735.0</td>\n",
" <td>6</td>\n",
" <td>Saint of Fort Washington, The (1993)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6385</th>\n",
" <td>735.0</td>\n",
" <td>7</td>\n",
" <td>Celestial Clockwork (1994)</td>\n",
" <td>Comedy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7326</th>\n",
" <td>735.0</td>\n",
" <td>8</td>\n",
" <td>Some Mother's Son (1996)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9222</th>\n",
" <td>735.0</td>\n",
" <td>9</td>\n",
" <td>Maya Lin: A Strong Clear Vision (1994)</td>\n",
" <td>Documentary</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8268</th>\n",
" <td>735.0</td>\n",
" <td>10</td>\n",
" <td>Prefontaine (1997)</td>\n",
" <td>Drama</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" user rec_nb title \\\n",
"733 735.0 1 Great Day in Harlem, A (1994) \n",
"1675 735.0 2 Tough and Deadly (1995) \n",
"2617 735.0 3 Aiqing wansui (1994) \n",
"3559 735.0 4 Delta of Venus (1994) \n",
"4501 735.0 5 Someone Else's America (1995) \n",
"5443 735.0 6 Saint of Fort Washington, The (1993) \n",
"6385 735.0 7 Celestial Clockwork (1994) \n",
"7326 735.0 8 Some Mother's Son (1996) \n",
"9222 735.0 9 Maya Lin: A Strong Clear Vision (1994) \n",
"8268 735.0 10 Prefontaine (1997) \n",
"\n",
" genres \n",
"733 Documentary \n",
"1675 Action, Drama, Thriller \n",
"2617 Drama \n",
"3559 Drama \n",
"4501 Drama \n",
"5443 Drama \n",
"6385 Comedy \n",
"7326 Drama \n",
"9222 Documentary \n",
"8268 Drama "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train = pd.read_csv(\n",
" \"./Datasets/ml-100k/train.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"items = pd.read_csv(\"./Datasets/ml-100k/movies.csv\")\n",
"\n",
"user = random.choice(list(set(train[\"user\"])))\n",
"\n",
"train_content = pd.merge(train, items, left_on=\"item\", right_on=\"id\")\n",
"\n",
"print(\"Here is what user rated high:\")\n",
"display(\n",
" train_content[train_content[\"user\"] == user][\n",
" [\"user\", \"rating\", \"title\", \"genres\"]\n",
" ].sort_values(by=\"rating\", ascending=False)[:15]\n",
")\n",
"\n",
"reco = np.loadtxt(\n",
" \"Recommendations generated/ml-100k/Self_BaselineUI_reco.csv\", delimiter=\",\"\n",
")\n",
"items = pd.read_csv(\"./Datasets/ml-100k/movies.csv\")\n",
"\n",
"# Let's ignore scores - they are not used in evaluation:\n",
"reco_users = reco[:, :1]\n",
"reco_items = reco[:, 1::2]\n",
"# Let's put them into one array\n",
"reco = np.concatenate((reco_users, reco_items), axis=1)\n",
"\n",
"# Let's rebuild it user-item dataframe\n",
"recommended = []\n",
"for row in reco:\n",
" for rec_nb, entry in enumerate(row[1:]):\n",
" recommended.append((row[0], rec_nb + 1, entry))\n",
"recommended = pd.DataFrame(recommended, columns=[\"user\", \"rec_nb\", \"item\"])\n",
"\n",
"recommended_content = pd.merge(recommended, items, left_on=\"item\", right_on=\"id\")\n",
"\n",
"print(\"Here is what we recommend:\")\n",
"recommended_content[recommended_content[\"user\"] == user][\n",
" [\"user\", \"rec_nb\", \"title\", \"genres\"]\n",
"].sort_values(by=\"rec_nb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 2: implement some other evaluation measure"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# it may be your idea, modification of what we have already implemented\n",
"# (for example Hit2 rate which would count as a success users whoreceived at least 2 relevant recommendations)\n",
"# or something well-known\n",
"# expected output: modification of evaluation_measures.py such that evaluate_all will also display your measure"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}