WSS-project/P2. Evaluation.ipynb
Robert Kwiecinski 0f00fb0454 2nd meeting
2021-04-16 22:41:06 +02:00

53 KiB

Prepare test set

import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
from tqdm import tqdm

# In evaluation we do not load train set - it is not needed
test = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)
test.columns = ["user", "item", "rating", "timestamp"]

test["user_code"] = test["user"].astype("category").cat.codes
test["item_code"] = test["item"].astype("category").cat.codes

user_code_id = dict(enumerate(test["user"].astype("category").cat.categories))
user_id_code = dict((v, k) for k, v in user_code_id.items())
item_code_id = dict(enumerate(test["item"].astype("category").cat.categories))
item_id_code = dict((v, k) for k, v in item_code_id.items())

test_ui = sparse.csr_matrix((test["rating"], (test["user_code"], test["item_code"])))

Estimations metrics

estimations_df = pd.read_csv(
    "Recommendations generated/ml-100k/Ready_Baseline_estimations.csv", header=None
)
estimations_df.columns = ["user", "item", "score"]

estimations_df["user_code"] = [user_id_code[user] for user in estimations_df["user"]]
estimations_df["item_code"] = [item_id_code[item] for item in estimations_df["item"]]
estimations = sparse.csr_matrix(
    (
        estimations_df["score"],
        (estimations_df["user_code"], estimations_df["item_code"]),
    ),
    shape=test_ui.shape,
)
def estimations_metrics(test_ui, estimations):
    result = []

    RMSE = (np.sum((estimations.data - test_ui.data) ** 2) / estimations.nnz) ** (1 / 2)
    result.append(["RMSE", RMSE])

    MAE = np.sum(abs(estimations.data - test_ui.data)) / estimations.nnz
    result.append(["MAE", MAE])

    df_result = (pd.DataFrame(list(zip(*result))[1])).T
    df_result.columns = list(zip(*result))[0]
    return df_result
# in case of error (in the laboratories) you might have to switch to the other version of pandas
# try !pip3 install pandas=='1.0.3' (or pip if you use python 2) and restart the kernel

estimations_metrics(test_ui, estimations)
RMSE MAE
0 0.949459 0.752487

Ranking metrics

import numpy as np

reco = np.loadtxt(
    "Recommendations generated/ml-100k/Ready_Baseline_reco.csv", delimiter=","
)
# Let's ignore scores - they are not used in evaluation:
users = reco[:, :1]
items = reco[:, 1::2]
# Let's use inner ids instead of real ones
users = np.vectorize(lambda x: user_id_code.setdefault(x, -1))(users)
items = np.vectorize(lambda x: item_id_code.setdefault(x, -1))(items)
reco = np.concatenate((users, items), axis=1)
reco
array([[663, 475,  62, ..., 472, 269, 503],
       [ 48, 313, 475, ..., 591, 175, 466],
       [351, 313, 475, ..., 591, 175, 466],
       ...,
       [259, 313, 475, ...,  11, 591, 175],
       [ 33, 313, 475, ...,  11, 591, 175],
       [ 77, 313, 475, ...,  11, 591, 175]])
def ranking_metrics(test_ui, reco, super_reactions=[], topK=10):

    nb_items = test_ui.shape[1]
    (
        relevant_users,
        super_relevant_users,
        prec,
        rec,
        F_1,
        F_05,
        prec_super,
        rec_super,
        ndcg,
        mAP,
        MRR,
        LAUC,
        HR,
    ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

    cg = 1.0 / np.log2(np.arange(2, topK + 2))
    cg_sum = np.cumsum(cg)

    for (nb_user, user) in tqdm(enumerate(reco[:, 0])):
        u_rated_items = test_ui.indices[test_ui.indptr[user] : test_ui.indptr[user + 1]]
        nb_u_rated_items = len(u_rated_items)
        if (
            nb_u_rated_items > 0
        ):  # skip users with no items in test set (still possible that there will be no super items)
            relevant_users += 1

            u_super_items = u_rated_items[
                np.vectorize(lambda x: x in super_reactions)(
                    test_ui.data[test_ui.indptr[user] : test_ui.indptr[user + 1]]
                )
            ]
            # more natural seems u_super_items=[item for item in u_rated_items if test_ui[user,item] in super_reactions]
            # but accesing test_ui[user,item] is expensive -we should avoid doing it
            if len(u_super_items) > 0:
                super_relevant_users += 1

            user_successes = np.zeros(topK)
            nb_user_successes = 0
            user_super_successes = np.zeros(topK)
            nb_user_super_successes = 0

            # evaluation
            for (item_position, item) in enumerate(reco[nb_user, 1 : topK + 1]):
                if item in u_rated_items:
                    user_successes[item_position] = 1
                    nb_user_successes += 1
                    if item in u_super_items:
                        user_super_successes[item_position] = 1
                        nb_user_super_successes += 1

            prec_u = nb_user_successes / topK
            prec += prec_u

            rec_u = nb_user_successes / nb_u_rated_items
            rec += rec_u

            F_1 += 2 * (prec_u * rec_u) / (prec_u + rec_u) if prec_u + rec_u > 0 else 0
            F_05 += (
                (0.5 ** 2 + 1) * (prec_u * rec_u) / (0.5 ** 2 * prec_u + rec_u)
                if prec_u + rec_u > 0
                else 0
            )

            prec_super += nb_user_super_successes / topK
            rec_super += nb_user_super_successes / max(
                len(u_super_items), 1
            )  # to set 0 if no super items
            ndcg += np.dot(user_successes, cg) / cg_sum[min(topK, nb_u_rated_items) - 1]

            cumsum_successes = np.cumsum(user_successes)
            mAP += np.dot(
                cumsum_successes / np.arange(1, topK + 1), user_successes
            ) / min(topK, nb_u_rated_items)
            MRR += (
                1 / (user_successes.nonzero()[0][0] + 1)
                if user_successes.nonzero()[0].size > 0
                else 0
            )
            LAUC += (
                np.dot(cumsum_successes, 1 - user_successes)
                + (nb_user_successes + nb_u_rated_items)
                / 2
                * ((nb_items - nb_u_rated_items) - (topK - nb_user_successes))
            ) / ((nb_items - nb_u_rated_items) * nb_u_rated_items)

            HR += nb_user_successes > 0

    result = []
    result.append(("precision", prec / relevant_users))
    result.append(("recall", rec / relevant_users))
    result.append(("F_1", F_1 / relevant_users))
    result.append(("F_05", F_05 / relevant_users))
    result.append(("precision_super", prec_super / super_relevant_users))
    result.append(("recall_super", rec_super / super_relevant_users))
    result.append(("NDCG", ndcg / relevant_users))
    result.append(("mAP", mAP / relevant_users))
    result.append(("MRR", MRR / relevant_users))
    result.append(("LAUC", LAUC / relevant_users))
    result.append(("HR", HR / relevant_users))

    df_result = (pd.DataFrame(list(zip(*result))[1])).T
    df_result.columns = list(zip(*result))[0]
    return df_result
ranking_metrics(test_ui, reco, super_reactions=[4, 5], topK=10)
943it [00:00, 9434.06it/s]
precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR
0 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964

Diversity metrics

def diversity_metrics(test_ui, reco, topK=10):

    frequencies = defaultdict(int)

    # let's assign 0 to all items in test set
    for item in list(set(test_ui.indices)):
        frequencies[item] = 0

    # counting frequencies
    for item in reco[:, 1:].flat:
        frequencies[item] += 1

    nb_reco_outside_test = frequencies[-1]
    del frequencies[-1]

    frequencies = np.array(list(frequencies.values()))

    nb_rec_items = len(frequencies[frequencies > 0])
    nb_reco_inside_test = np.sum(frequencies)

    frequencies = frequencies / np.sum(frequencies)
    frequencies = np.sort(frequencies)

    with np.errstate(
        divide="ignore"
    ):  # let's put zeros put items with 0 frequency and ignore division warning
        log_frequencies = np.nan_to_num(np.log(frequencies), posinf=0, neginf=0)

    result = []
    result.append(
        (
            "Reco in test",
            nb_reco_inside_test / (nb_reco_inside_test + nb_reco_outside_test),
        )
    )
    result.append(("Test coverage", nb_rec_items / test_ui.shape[1]))
    result.append(("Shannon", -np.dot(frequencies, log_frequencies)))
    result.append(
        (
            "Gini",
            np.dot(frequencies, np.arange(1 - len(frequencies), len(frequencies), 2))
            / (len(frequencies) - 1),
        )
    )

    df_result = (pd.DataFrame(list(zip(*result))[1])).T
    df_result.columns = list(zip(*result))[0]
    return df_result
# in case of errors try !pip3 install numpy==1.18.4 (or pip if you use python 2) and restart the kernel

x = diversity_metrics(test_ui, reco, topK=10)
x
Reco in test Test coverage Shannon Gini
0 1.0 0.033911 2.836513 0.991139

To be used in other notebooks

import evaluation_measures as ev

estimations_df = pd.read_csv(
    "Recommendations generated/ml-100k/Ready_Baseline_estimations.csv", header=None
)
reco = np.loadtxt(
    "Recommendations generated/ml-100k/Ready_Baseline_reco.csv", delimiter=","
)

ev.evaluate(
    test=pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None),
    estimations_df=estimations_df,
    reco=reco,
    super_reactions=[4, 5],
)
# also you can just type ev.evaluate_all(estimations_df, reco) - I put above values as default
943it [00:00, 11012.47it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.949459 0.752487 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.0 0.033911 2.836513 0.991139
dir_path = "Recommendations generated/ml-100k/"
super_reactions = [4, 5]
test = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)

df = ev.evaluate_all(test, dir_path, super_reactions)
# also you can just type ev.evaluate_all() - I put above values as default
943it [00:00, 10346.82it/s]
943it [00:00, 11772.32it/s]
943it [00:00, 10636.62it/s]
943it [00:00, 10767.92it/s]
943it [00:00, 12019.93it/s]
df.iloc[:, :9]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463
0 Ready_Random 1.521845 1.225949 0.047190 0.020753 0.024810 0.032269 0.029506 0.023707
0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 0.000481 0.000644 0.000223
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189
df.iloc[:, np.append(0, np.arange(9, df.shape[1]))]
Model NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_TopPop 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_Baseline 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Ready_Random 0.050075 0.018728 0.121957 0.506893 0.329799 0.986532 0.184704 5.099706 0.907217
0 Self_TopRated 0.001043 0.000335 0.003348 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669
0 Self_BaselineUI 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380

Check metrics on toy dataset

import helpers

dir_path = "Recommendations generated/toy-example/"
super_reactions = [4, 5]
test = pd.read_csv("./Datasets/toy-example/test.csv", sep="\t", header=None)

display(ev.evaluate_all(test, dir_path, super_reactions, topK=3))
# also you can just type ev.evaluate_all() - I put above values as default

toy_train_read = pd.read_csv(
    "./Datasets/toy-example/train.csv",
    sep="\t",
    header=None,
    names=["user", "item", "rating", "timestamp"],
)
toy_test_read = pd.read_csv(
    "./Datasets/toy-example/test.csv",
    sep="\t",
    header=None,
    names=["user", "item", "rating", "timestamp"],
)
reco = pd.read_csv(
    "Recommendations generated/toy-example/Self_BaselineUI_reco.csv", header=None
)
estimations = pd.read_csv(
    "Recommendations generated/toy-example/Self_BaselineUI_estimations.csv",
    names=["user", "item", "est_score"],
)
(
    toy_train_ui,
    toy_test_ui,
    toy_user_code_id,
    toy_user_id_code,
    toy_item_code_id,
    toy_item_id_code,
) = helpers.data_to_csr(toy_train_read, toy_test_read)

print("Training data:")
display(toy_train_ui.todense())

print("Test data:")
display(toy_test_ui.todense())

print("Recommendations:")
display(reco)

print("Estimations:")
display(estimations)
3it [00:00, 5771.98it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Self_BaselineUI 1.612452 1.4 0.444444 0.888889 0.555556 0.478632 0.333333 0.75 0.676907 0.574074 0.611111 0.638889 1.0 0.888889 0.8 1.386294 0.25
Training data:
matrix([[3, 4, 0, 0, 5, 0, 0, 4],
        [0, 1, 2, 3, 0, 0, 0, 0],
        [0, 0, 0, 5, 0, 3, 4, 0]])
Test data:
matrix([[0, 0, 0, 0, 0, 0, 3, 0],
        [0, 0, 0, 0, 5, 0, 0, 0],
        [5, 0, 4, 0, 0, 0, 0, 2]])
Recommendations:
0 1 2 3 4 5 6
0 0 30 5.0 20 4.0 60 4.0
1 10 40 3.0 60 2.0 70 2.0
2 20 40 5.0 20 4.0 70 4.0
Estimations:
user item est_score
0 0 60 4.0
1 10 40 3.0
2 20 0 3.0
3 20 20 4.0
4 20 70 4.0

Sample recommendations

train = pd.read_csv(
    "./Datasets/ml-100k/train.csv",
    sep="\t",
    header=None,
    names=["user", "item", "rating", "timestamp"],
)
items = pd.read_csv("./Datasets/ml-100k/movies.csv")

user = random.choice(list(set(train["user"])))

train_content = pd.merge(train, items, left_on="item", right_on="id")

print("Here is what user rated high:")
display(
    train_content[train_content["user"] == user][
        ["user", "rating", "title", "genres"]
    ].sort_values(by="rating", ascending=False)[:15]
)

reco = np.loadtxt(
    "Recommendations generated/ml-100k/Self_BaselineUI_reco.csv", delimiter=","
)
items = pd.read_csv("./Datasets/ml-100k/movies.csv")

# Let's ignore scores - they are not used in evaluation:
reco_users = reco[:, :1]
reco_items = reco[:, 1::2]
# Let's put them into one array
reco = np.concatenate((reco_users, reco_items), axis=1)

# Let's rebuild it user-item dataframe
recommended = []
for row in reco:
    for rec_nb, entry in enumerate(row[1:]):
        recommended.append((row[0], rec_nb + 1, entry))
recommended = pd.DataFrame(recommended, columns=["user", "rec_nb", "item"])

recommended_content = pd.merge(recommended, items, left_on="item", right_on="id")

print("Here is what we recommend:")
recommended_content[recommended_content["user"] == user][
    ["user", "rec_nb", "title", "genres"]
].sort_values(by="rec_nb")
Here is what user rated high:
user rating title genres
57482 2 5 Emma (1996) Drama, Romance
54506 2 5 Sense and Sensibility (1995) Drama, Romance
40581 2 5 Titanic (1997) Action, Drama, Romance
2949 2 5 Star Wars (1977) Action, Adventure, Romance, Sci-Fi, War
69653 2 5 Wings of the Dove, The (1997) Drama, Romance, Thriller
7906 2 5 As Good As It Gets (1997) Comedy, Drama
69400 2 5 Shall We Dance? (1996) Comedy
14469 2 5 Fargo (1996) Crime, Drama, Thriller
46151 2 5 L.A. Confidential (1997) Crime, Film-Noir, Mystery, Thriller
67293 2 5 Good Will Hunting (1997) Drama
20923 2 5 Secrets & Lies (1996) Drama
52921 2 5 Kolya (1996) Comedy
50103 2 4 Mrs. Brown (Her Majesty, Mrs. Brown) (1997) Drama, Romance
51972 2 4 Mighty Aphrodite (1995) Comedy
515 2 4 Heat (1995) Action, Crime, Thriller
Here is what we recommend:
user rec_nb title genres
1 2.0 1 Great Day in Harlem, A (1994) Documentary
943 2.0 2 Tough and Deadly (1995) Action, Drama, Thriller
1885 2.0 3 Aiqing wansui (1994) Drama
2827 2.0 4 Delta of Venus (1994) Drama
3769 2.0 5 Someone Else's America (1995) Drama
4711 2.0 6 Saint of Fort Washington, The (1993) Drama
5653 2.0 7 Celestial Clockwork (1994) Comedy
6595 2.0 8 Some Mother's Son (1996) Drama
8489 2.0 9 Maya Lin: A Strong Clear Vision (1994) Documentary
7536 2.0 10 Prefontaine (1997) Drama

project task 2: implement some other evaluation measure

# it may be your idea, modification of what we have already implemented
# (for example Hit2 rate which would count as a success users whoreceived at least 2 relevant recommendations)
# or something well-known
# expected output: modification of evaluation_measures.py such that evaluate_all will also display your measure