forked from kubapok/auta-public
5.0 KiB
5.0 KiB
import pandas as pd
import numpy as np
from pathlib import Path
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
TRENING
NAMES = ["Price","Mileage","Year","Brand","EngineType","EngineCapacity"]
TRAIN_BASE = pd.read_csv("train/train.tsv", sep ='\t', names=NAMES)
Y_TRAIN = np.array(TRAIN_BASE["Price"])
X_TRAIN = np.array(TRAIN_BASE[["Mileage","Year","EngineCapacity"]])
MODEL = LinearRegression().fit(X_TRAIN,Y_TRAIN)
DEV-0
NAMES = ["Mileage","Year","Brand","EngineType","EngineCapacity"]
FILE_BASE = pd.read_csv("dev-0/in.tsv", sep ='\t', names=NAMES)
X_TEST = np.array(FILE_BASE[["Mileage","Year","EngineCapacity"]])
Y_TEST = MODEL.predict(X_TEST)
VALUES = np.array2string(Y_TEST, precision=5, separator='\n',suppress_small=True)
VALUES = VALUES.split(".\n")
OUTFILE = open("dev-0/out.tsv", "w")
for x in VALUES:
RESULT = x.replace(" ","")
RESULT = RESULT.replace("[","")
RESULT = RESULT.replace("]","")
OUTFILE.write(str(RESULT))
OUTFILE.close()
TEST A
NAMES = ["Mileage","Year","Brand","EngineType","EngineCapacity"]
FILE_BASE = pd.read_csv("test-A/in.tsv", sep ='\t', names=NAMES)
X_TEST = np.array(FILE_BASE[["Mileage","Year","EngineCapacity"]])
Y_TEST = MODEL.predict(X_TEST)
VALUES = np.array2string(Y_TEST, precision=5, separator='\n',suppress_small=True)
VALUES = VALUES.split(".\n")
OUTFILE = open("test-A/out.tsv", "w")
for x in VALUES:
RESULT = x.replace(" ","")
RESULT = RESULT.replace("[","")
RESULT = RESULT.replace("]","")
OUTFILE.write(str(RESULT) )
OUTFILE.close()