warsztaty2/P5. Graph-based.ipynb
2020-06-16 19:40:37 +02:00

555 KiB
Raw Permalink Blame History

Self made RP3-beta

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
import time
import matplotlib.pyplot as plt

train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None)
test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)
train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)
class RP3Beta():
    def fit(self, train_ui, alpha, beta):
        """We weight our edges by user's explicit ratings so if user rated movie high we'll follow that path
        with higher probability."""
        self.train_ui=train_ui
        self.train_iu=train_ui.transpose()
        
        self.alpha = alpha
        self.beta = beta
        
        # Define Pui 
        Pui=sparse.csr_matrix(self.train_ui/self.train_ui.sum(axis=1))
        
        # Define Piu
        to_divide=np.vectorize(lambda x: x if x>0 else 1)(self.train_iu.sum(axis=1)) # to avoid dividing by zero
        Piu=sparse.csr_matrix(self.train_iu/to_divide)
        item_orders=(self.train_ui>0).sum(axis=0)
        
        Pui = Pui.power(self.alpha)
        Piu = Piu.power(self.alpha)

        P3=Pui*Piu*Pui
        
        P3/=np.power(np.vectorize(lambda x: x if x>0 else 1)(item_orders), self.beta)
        
        self.estimations=np.array(P3)
    
    def recommend(self, user_code_id, item_code_id, topK=10):
        
        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):
            
            user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result=[]
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid]+list(chain(*item_scores[:topK])))
        return result
    
    def estimate(self, user_code_id, item_code_id, test_ui):
        result=[]
        for user, item in zip(*test_ui.nonzero()):
            result.append([user_code_id[user], item_code_id[item], 
                           self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])
        return result
model=RP3Beta()
model.fit(train_ui, alpha=1, beta=0)
top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_P3_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', index=False, header=False)
import evaluation_measures as ev
estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 9220.23it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.0 0.077201 3.875892 0.974947

Let's check hiperparameters

Alpha
from tqdm import tqdm
result=[]
for alpha in tqdm([round(i,1) for i in np.arange(0.2,1.6001,0.2)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=alpha, beta=0)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Alpha", alpha)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|          | 0/8 [00:00<?, ?it/s]
943it [00:00, 9951.34it/s]
 12%|█▎        | 1/8 [00:08<01:00,  8.59s/it]
0it [00:00, ?it/s]
943it [00:00, 9002.19it/s]
 25%|██▌       | 2/8 [00:17<00:51,  8.55s/it]
943it [00:00, 9650.83it/s]
 38%|███▊      | 3/8 [00:25<00:42,  8.59s/it]
943it [00:00, 9645.16it/s]
 50%|█████     | 4/8 [00:34<00:34,  8.56s/it]
943it [00:00, 9747.61it/s]
 62%|██████▎   | 5/8 [00:42<00:25,  8.56s/it]
0it [00:00, ?it/s]
943it [00:00, 8754.83it/s]
 75%|███████▌  | 6/8 [00:51<00:17,  8.55s/it]
943it [00:00, 9849.34it/s]
 88%|████████▊ | 7/8 [01:00<00:08,  8.60s/it]
943it [00:00, 9550.72it/s]
100%|██████████| 8/8 [01:08<00:00,  8.57s/it]
Alpha RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.2 268.177832 211.732649 0.262672 0.166858 0.166277 0.197184 0.187661 0.203252 0.320910 0.196132 0.563378 0.580866 0.850477 1.000000 0.060606 3.669627 0.979636
0 0.4 10.546689 7.792373 0.268505 0.172669 0.171569 0.202643 0.192489 0.212653 0.326760 0.200172 0.565148 0.583801 0.854719 1.000000 0.064214 3.726996 0.978426
0 0.6 3.143988 2.948790 0.274655 0.180502 0.177820 0.208730 0.198176 0.222746 0.332872 0.203290 0.568872 0.587738 0.870626 1.000000 0.065657 3.785282 0.977090
0 0.8 3.670728 3.495735 0.281972 0.189868 0.185300 0.216071 0.203541 0.236751 0.339867 0.206688 0.573729 0.592432 0.874867 1.000000 0.070707 3.832415 0.975998
0 1.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 1.2 3.704441 3.529251 0.280912 0.193633 0.187311 0.216872 0.203004 0.240588 0.338049 0.203453 0.571830 0.594313 0.883351 1.000000 0.085859 3.910718 0.974073
0 1.4 3.704580 3.529388 0.273595 0.190651 0.183874 0.212183 0.199464 0.239118 0.329550 0.195433 0.566171 0.592793 0.871686 1.000000 0.107504 3.961915 0.972674
0 1.6 3.704591 3.529399 0.263097 0.186255 0.178709 0.205170 0.191094 0.232920 0.317439 0.184917 0.552349 0.590545 0.868505 0.999576 0.156566 4.060156 0.969203
metrics=list(result.columns[[i not in ['Alpha'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Alpha', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)
Beta
from tqdm import tqdm
result=[]
for beta in tqdm([round(i,1) for i in np.arange(0,1,0.1)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=1, beta=beta)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Beta", beta)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|          | 0/10 [00:00<?, ?it/s]
0it [00:00, ?it/s]
943it [00:00, 8518.16it/s]
 10%|█         | 1/10 [00:08<01:20,  8.89s/it]
943it [00:00, 9548.16it/s]
 20%|██        | 2/10 [00:18<01:11,  8.98s/it]
0it [00:00, ?it/s]
943it [00:00, 8836.58it/s]
 30%|███       | 3/10 [00:26<01:02,  8.87s/it]
0it [00:00, ?it/s]
943it [00:00, 8920.03it/s]
 40%|████      | 4/10 [00:35<00:52,  8.80s/it]
0it [00:00, ?it/s]
943it [00:00, 9269.76it/s]
 50%|█████     | 5/10 [00:44<00:44,  8.87s/it]
0it [00:00, ?it/s]
943it [00:00, 8958.45it/s]
 60%|██████    | 6/10 [00:53<00:35,  8.80s/it]
0it [00:00, ?it/s]
943it [00:00, 8674.45it/s]
 70%|███████   | 7/10 [01:01<00:26,  8.79s/it]
943it [00:00, 9648.17it/s]
 80%|████████  | 8/10 [01:10<00:17,  8.77s/it]
943it [00:00, 9457.86it/s]
 90%|█████████ | 9/10 [01:19<00:08,  8.73s/it]
0it [00:00, ?it/s]
943it [00:00, 8711.65it/s]
100%|██████████| 10/10 [01:27<00:00,  8.79s/it]
Beta RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 0.1 3.703312 3.528128 0.290138 0.197597 0.192259 0.223336 0.210944 0.246153 0.347768 0.212034 0.581038 0.596328 0.884411 1.000000 0.085137 3.957416 0.972784
0 0.2 3.703825 3.528636 0.297137 0.201202 0.196067 0.228169 0.218026 0.252767 0.355655 0.219909 0.588904 0.598160 0.886532 1.000000 0.094517 4.053212 0.969980
0 0.3 3.704130 3.528939 0.303499 0.204749 0.199901 0.232829 0.225107 0.260797 0.363757 0.226825 0.599969 0.599964 0.888653 1.000000 0.105339 4.147779 0.966948
0 0.4 3.704313 3.529120 0.308908 0.208811 0.203854 0.237241 0.229614 0.266918 0.370758 0.232673 0.609385 0.602014 0.895016 0.999894 0.132035 4.259682 0.962989
0 0.5 3.704422 3.529229 0.314316 0.211411 0.206768 0.240986 0.237124 0.273416 0.378307 0.239297 0.622792 0.603327 0.903499 0.999046 0.168831 4.411281 0.956648
0 0.6 3.704488 3.529295 0.314634 0.206209 0.204818 0.240159 0.242489 0.273850 0.376438 0.238428 0.622042 0.600721 0.897137 0.996394 0.212843 4.621938 0.945932
0 0.7 3.704528 3.529335 0.304136 0.187298 0.191990 0.228749 0.238305 0.256201 0.358807 0.226808 0.593897 0.591207 0.868505 0.983033 0.256854 4.898568 0.928065
0 0.8 3.704552 3.529360 0.266384 0.147571 0.158660 0.194838 0.214485 0.209336 0.299850 0.184356 0.492852 0.571152 0.803818 0.936373 0.341270 5.257397 0.895882
0 0.9 3.704567 3.529375 0.162354 0.076967 0.089233 0.114583 0.134657 0.113253 0.160868 0.085486 0.243590 0.535405 0.580064 0.800106 0.415584 5.563910 0.857396
### import matplotlib.pyplot as plt

metrics=list(result.columns[[i not in ['Beta'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Beta', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)

Check sample recommendations

train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'])
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

user=random.choice(list(set(train['user'])))

train_content=pd.merge(train, items, left_on='item', right_on='id')
display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\
        .sort_values(by='rating', ascending=False)[:15])

reco = np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

# Let's ignore scores - they are not used in evaluation: 
reco_users=reco[:,:1]
reco_items=reco[:,1::2]
# Let's put them into one array
reco=np.concatenate((reco_users, reco_items), axis=1)

# Let's rebuild it user-item dataframe
recommended=[]
for row in reco:
    for rec_nb, entry in enumerate(row[1:]):
        recommended.append((row[0], rec_nb+1, entry))
recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])

recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')
recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')
user rating title genres
28480 774 5 Right Stuff, The (1983) Drama
50423 774 5 Conan the Barbarian (1981) Action, Adventure
18188 774 5 Clockwork Orange, A (1971) Sci-Fi
22286 774 5 Groundhog Day (1993) Comedy, Romance
23943 774 5 Apocalypse Now (1979) Drama, War
51726 774 5 Star Trek VI: The Undiscovered Country (1991) Action, Adventure, Sci-Fi
16714 774 5 Man Who Would Be King, The (1975) Adventure
42312 774 5 Treasure of the Sierra Madre, The (1948) Adventure
37594 774 4 Nightmare on Elm Street, A (1984) Horror
16066 774 4 Godfather, The (1972) Action, Crime, Drama
62624 774 4 Highlander (1986) Action, Adventure
3611 774 4 Aliens (1986) Action, Sci-Fi, Thriller, War
57765 774 4 Killing Fields, The (1984) Drama, War
54287 774 4 12 Angry Men (1957) Drama
47568 774 4 Alien (1979) Action, Horror, Sci-Fi, Thriller
user rec_nb title genres
900 774.0 1 Silence of the Lambs, The (1991) Drama, Thriller
3335 774.0 2 Toy Story (1995) Animation, Children's, Comedy
7822 774.0 3 Princess Bride, The (1987) Action, Adventure, Comedy, Romance
4301 774.0 4 Twelve Monkeys (1995) Drama, Sci-Fi
8426 774.0 5 Indiana Jones and the Last Crusade (1989) Action, Adventure
8752 774.0 6 Terminator, The (1984) Action, Sci-Fi, Thriller
2075 774.0 7 Back to the Future (1985) Comedy, Sci-Fi
8681 774.0 8 Forrest Gump (1994) Comedy, Romance, War
7507 774.0 9 Star Trek: First Contact (1996) Action, Adventure, Sci-Fi
7942 774.0 10 Amadeus (1984) Drama, Mystery

project task 6: generate recommendations of RP3Beta for hiperparameters found to optimize recall

# use better values than (1,0) for alpha and beta
# if you want you can also modify the model to consider different weights (we took as weights user ratings, maybe take ones or squares of ratings instead)
# save the outptut in 'Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_RP3Beta_reco.csv'model=RP3Beta()
model.fit(train_ui, alpha=1.4, beta=0.3)
top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', index=False, header=False)
import evaluation_measures as ev
estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='	', header=None),            estimations_df=estimations_df,            reco=reco,            super_reactions=[4,5])
943it [00:00, 9215.29it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 3.704589 3.529397 0.286744 0.196524 0.191117 0.221375 0.213948 0.251263 0.344598 0.207836 0.587953 0.59577 0.885472 0.998197 0.193362 4.291821 0.960775

project task 7 (optional): implement graph-based model of your choice

# for example change length of paths in RP3beta
# save the outptut in 'Recommendations generated/ml-100k/Self_GraphTask_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_GraphTask_reco.csv'