nn lr part

This commit is contained in:
Mariusz B 2021-05-30 14:53:39 +00:00
parent cd41e7ed4a
commit 6b27605f82
3 changed files with 2424 additions and 2406 deletions

File diff suppressed because it is too large Load Diff

96
main.py
View File

@ -6,14 +6,14 @@ from sklearn.feature_extraction.text import TfidfVectorizer
import torch import torch
from gensim import downloader from gensim import downloader
from nltk.tokenize import word_tokenize from nltk.tokenize import word_tokenize
import pandas as pd
class NetworkModel(torch.nn.Module): class NetworkModel(torch.nn.Module):
def __init__(self): def __init__(self, input_size, hidden_size, num_classes):
dim = 200 super(NetworkModel, self).__init__()
super(NeuralNetworkModel, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc1 = torch.nn.Linear(dim, 500) self.fc2 = torch.nn.Linear(hidden_size, num_classes)
self.fc2 = torch.nn.Linear(500, 1)
def forward(self, x): def forward(self, x):
x = self.fc1(x) x = self.fc1(x)
@ -31,59 +31,77 @@ def word2vecOnDoc(document):
) )
def prepareData(data): def prepareData(data):
data = [word_tokenize(row) for row in data] data = [word_tokenize(row) for row in data.content.str.lower()]
print(data)
data = [word2vecOnDoc(document) for document in data] data = [word2vecOnDoc(document) for document in data]
return data return data
def trainModel(trainFileIn, trainFileExpected): def trainModel(trainFileIn, trainFileExpected):
with open(trainFileExpected, 'r') as f: inData = pd.read_table(
expectedData = f.readlines() trainFileIn,
error_bad_lines=False,
header=None,
quoting=3,
usecols=["content"],
names=["content", "id"],
nrows=225000,
)
expectedData = pd.read_table(
trainFileExpected,
error_bad_lines=False,
header=None,
quoting=3,
usecols=["label"],
names=["label"],
nrows=225000,
)
with open(trainFileIn, 'r') as f: # expectedData = prepareData(expectedData)
inData = f.readlines()
expectedData = prepareData(expectedData)
inData = prepareData(inData) inData = prepareData(inData)
# networkModel = NetworkModel(300, 300, 1) networkModel = NetworkModel(300, 300, 1)
# criterion = torch.nn.BCELoss() criterion = torch.nn.BCELoss()
# optim = torch.optim.SGD(network.parameters(), lr=0.02) optim = torch.optim.SGD(networkModel.parameters(), lr=0.02)
# epochs = 1 epochs = 1
# batchSize = 2 batchSize = 2
# for _ in range(epochs): for _ in range(epochs):
# network.train() networkModel.train()
# for i in range(0, inData.shape[0], batchSize): for i in range(0, expectedData.shape[0], batchSize):
# x = inData[i : i + batchSize] x = inData[i : i + batchSize]
# x = torch.tensor(x) x = torch.tensor(x)
# y = expectedData[i : i + batchSize] y = expectedData[i : i + batchSize]
# y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1) y = torch.tensor(y.astype(numpy.float32).to_numpy()).reshape(-1, 1)
# outputs = network(x.float()) outputs = networkModel(x.float())
# loss = criterion(outputs, y) loss = criterion(outputs, y)
# print(loss) # print(loss)
# optim.zero_grad() optim.zero_grad()
# loss.backward() loss.backward()
# optim.step() optim.step()
# return networkModel return networkModel
def evaluateModel(model, inFile, outFile): def evaluateModel(model, inFile, outFile):
with open(inFile, 'r') as f: inData = pd.read_table(
inData = f.readlines() inFile,
error_bad_lines=False,
header=None,
quoting=3,
usecols=["content"],
names=["content", "id"],
)
inData = prepareData(inData) inData = prepareData(inData)
batchSize = 2
pred = [] pred = []
with torch.no_grad(): with torch.no_grad():
for i in range(0, len(inData), batch_size): for i in range(0, len(inData), batchSize):
x = inData[i : i + batch_size] x = inData[i : i + batchSize]
x = torch.tensor(x) x = torch.tensor(x)
outputs = model(x.float()) outputs = model(x.float())
prediction = outputs >= 0.5 prediction = outputs >= 0.5
pred += prediction.tolist() pred += prediction.tolist()
numpy.asarray(pred, dtype=numpyp.int32).tofile(outFile, sep="\n") numpy.asarray(pred, dtype=numpy.int32).tofile(outFile, sep="\n")
model = trainModel("train/in.tsv", "train/expected.tsv") model = trainModel("train/in.tsv", "train/expected.tsv")
#evaluateModel(model, "dev-0/in.tsv", "dev-0/out.tsv") evaluateModel(model, "dev-0/in.tsv", "dev-0/out.tsv")
#evaluateModel(model, "test-A/in.tsv", "test-A/out.tsv") evaluateModel(model, "test-A/in.tsv", "test-A/out.tsv")

File diff suppressed because it is too large Load Diff