Added liniar regression
This commit is contained in:
parent
0839c5ca41
commit
9fb516216a
10544
dev-0/out.tsv
10544
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
55
predict.py
Executable file
55
predict.py
Executable file
@ -0,0 +1,55 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import pickle, re, sys
|
||||
from nltk.corpus import stopwords
|
||||
|
||||
def clear_post(post):
|
||||
post = post.replace('\\n', ' ')
|
||||
post = re.sub(r'(\(|)(http|https|www)[a-zA-Z0-9\.\:\/\_\=\&\;\?\+\-\%]+(\)|)', ' internetlink ', post)
|
||||
post = re.sub(r'[\.\,\/\~]+', ' ', post)
|
||||
post = re.sub(r'(<|>|\@[a-zA-Z0-9]+)','',post)
|
||||
post = re.sub(r'[\'\(\)\?\*\"\`\;0-9\[\]\:\%\|\–\”\!\=\^]+', '', post)
|
||||
post = re.sub(r'( \- |\-\-+)', ' ', post)
|
||||
post = re.sub(r' +', ' ', post)
|
||||
post = post.rstrip(' ')
|
||||
post = post.split(' ')
|
||||
stop_words = set(stopwords.words('english'))
|
||||
post_no_stop = [w for w in post if not w in stop_words]
|
||||
return post_no_stop
|
||||
|
||||
def calc_prob(posts, weights, word_to_index_mapping):
|
||||
for post in posts:
|
||||
d = post.split(' ')
|
||||
y_hat = weights[0]
|
||||
for token in d:
|
||||
try:
|
||||
y_hat += weights[word_to_index_mapping[token]] * post.count(token)
|
||||
except KeyError:
|
||||
y_hat += 0
|
||||
if y_hat > 0.5:
|
||||
print("1")
|
||||
else:
|
||||
print("0")
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2:
|
||||
print("Expected model")
|
||||
return
|
||||
|
||||
model = str(sys.argv[1])
|
||||
|
||||
posts = []
|
||||
for line in sys.stdin:
|
||||
text, timestap = line.rstrip('\n').split('\t')
|
||||
post = clear_post(text)
|
||||
posts.append(" ".join(post))
|
||||
|
||||
with open(model, 'rb') as f:
|
||||
pickle_list = pickle.load(f)
|
||||
|
||||
weights = pickle_list[0]
|
||||
lowest_loss_weights = pickle_list[1]
|
||||
word_to_index_mapping = pickle_list[2]
|
||||
calc_prob(posts, weights, word_to_index_mapping)
|
||||
|
||||
main()
|
10304
test-A/out.tsv
10304
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
30
train.py
30
train.py
@ -1,5 +1,5 @@
|
||||
#!/usr/bin/python3
|
||||
import re, sys, pickle, nltk, math, random
|
||||
import re, sys, pickle, random
|
||||
from nltk.corpus import stopwords
|
||||
|
||||
def clear_post(post):
|
||||
@ -28,6 +28,9 @@ def create_vocabulary_and_documents(in_file, expected_file):
|
||||
posts[" ".join(post)] = int(exp)
|
||||
for word in post:
|
||||
vocabulary.add(word)
|
||||
with open('data', 'wb') as f:
|
||||
pickle.dump([vocabulary, posts], f)
|
||||
print("data created")
|
||||
return vocabulary, posts
|
||||
|
||||
def create_mappings(vocabulary):
|
||||
@ -47,14 +50,22 @@ def main():
|
||||
model = str(sys.argv[1])
|
||||
expected_file = str(sys.argv[2])
|
||||
in_file = str(sys.argv[3])
|
||||
vocabulary, posts = create_vocabulary_and_documents(in_file, expected_file)
|
||||
try:
|
||||
with open("data", 'rb') as pos:
|
||||
pickle_list = pickle.load(pos)
|
||||
print("data loaded")
|
||||
vocabulary = pickle_list[0]
|
||||
posts = pickle_list[1]
|
||||
except FileNotFoundError:
|
||||
vocabulary, posts = create_vocabulary_and_documents(in_file, expected_file)
|
||||
|
||||
word_to_index_mapping, index_to_word_mapping = create_mappings(vocabulary)
|
||||
|
||||
weights = []
|
||||
for xi in range(0, len(vocabulary) + 1):
|
||||
weights.append(random.uniform(-0.01,0.01))
|
||||
|
||||
learning_rate = 0.000001
|
||||
learning_rate = 0.000000001
|
||||
loss_sum = 0.0
|
||||
loss_sum_counter = 0
|
||||
lowest_loss_sum_weights = []
|
||||
@ -62,7 +73,7 @@ def main():
|
||||
|
||||
print(f"len of vocabulary {len(vocabulary)}")
|
||||
# mozna ustawić na bardzo bardzo duzo
|
||||
while True: #loss_sum_counter != 10:
|
||||
while loss_sum_counter != 10000:
|
||||
try:
|
||||
d, y = random.choice(list(posts.items()))
|
||||
y_hat = weights[0]
|
||||
@ -71,13 +82,14 @@ def main():
|
||||
# mozna tez cos pomyslec z count aby lepiej dzialalo
|
||||
#print(f"{d.count(word)} : {word}")
|
||||
y_hat += weights[word_to_index_mapping[word]] * tokens.count(word)
|
||||
#print(f"{weights[word_to_index_mapping[word]]} : {word}")
|
||||
|
||||
loss = (y_hat - y)**2
|
||||
loss_sum += loss
|
||||
delta = (y_hat - y) * learning_rate
|
||||
if loss_sum_counter % 100 == 0:
|
||||
print(f"{loss_sum /1000} : {loss_sum_counter} : {y_hat} : {delta}")
|
||||
loss_sum_counter = 0
|
||||
print(f"{loss_sum_counter} : {loss_sum /1000} : {y_hat} : {delta} : {lowest_loss_sum}")
|
||||
#loss_sum_counter = 0
|
||||
loss_sum = 0
|
||||
|
||||
weights[0] -= delta
|
||||
@ -85,12 +97,14 @@ def main():
|
||||
weights[word_to_index_mapping[word]] -= tokens.count(word) * delta
|
||||
|
||||
if lowest_loss_sum > loss_sum and loss_sum != 0:
|
||||
print("it happened")
|
||||
print(f"it happened, new lowest_sum {loss_sum}")
|
||||
lowest_loss_sum = loss_sum
|
||||
lowest_loss_sum_weights = weights
|
||||
|
||||
loss_sum_counter +=1
|
||||
except KeyboardInterrupt:
|
||||
break
|
||||
print(lowest_loss_sum_weights)
|
||||
#print(lowest_loss_sum_weights)
|
||||
with open(model, 'wb') as f:
|
||||
pickle.dump([weights, lowest_loss_sum_weights, word_to_index_mapping], f)
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user