93 lines
3.5 KiB
Python
Executable File
93 lines
3.5 KiB
Python
Executable File
#!/usr/bin/python3
|
||
|
||
import pickle
|
||
import math
|
||
import re
|
||
import sys
|
||
import nltk
|
||
from nltk.corpus import stopwords
|
||
|
||
def calc_post_class(post, paranormal_class_logprob, sceptic_class_logprob, bigrams_logprobs, words_logprobs, total_sceptic_bigram, total_paranormal_bigram, total_sceptic_word, total_paranormal_word):
|
||
text, timestap = post.rstrip('\n').split('\t')
|
||
tokens = clear_post(text)
|
||
#tokens = text.lower().split(' ')
|
||
probs = {}
|
||
for class_ in bigrams_logprobs.keys():
|
||
product = 0
|
||
for index in range(len(tokens)-1):
|
||
# we handle bigrams not in models as neutral
|
||
bigram = tokens[index] + " " + tokens[index + 1]
|
||
#print(bigram)
|
||
try:
|
||
product += bigrams_logprobs[class_][bigram] * 4
|
||
except KeyError:
|
||
product += 0
|
||
# if class_ == 'sceptic':
|
||
# product += math.log(1/total_sceptic_bigram)
|
||
# elif class_ == 'paranormal':
|
||
# product += math.log(1/total_paranormal_bigram)
|
||
for token in tokens:
|
||
try:
|
||
product += words_logprobs[class_][token]/7
|
||
except KeyError:
|
||
product +=0
|
||
#if class_ == 'sceptic':
|
||
# product += math.log(1/total_sceptic_word)
|
||
#elif class_ == 'paranormal':
|
||
# product += math.log(1/total_paranormal_word)
|
||
|
||
if class_ == 'sceptic':
|
||
product += sceptic_class_logprob
|
||
elif class_ == 'paranormal':
|
||
product += paranormal_class_logprob
|
||
probs[abs(product)] = class_
|
||
|
||
#print(probs)
|
||
return probs[max(probs.keys())]
|
||
|
||
def clear_post(post):
|
||
post = post.replace('\\n', ' ')
|
||
post = post.lower()
|
||
post = re.sub(r'(\(|)(http|https|www)[a-zA-Z0-9\.\:\/\_\=\&\;\-\?\+\%]+(\)|)', ' internetlink ', post)
|
||
post = re.sub(r'[\.\,\/\~]+', ' ', post)
|
||
post = re.sub(r'(<|>|\@[a-zA-Z0-9]+)','',post)
|
||
post = re.sub(r'[\'\(\)\?\*\"\`\;0-9\[\]\:\%\|\–\”\!\=\^]+', '', post)
|
||
post = re.sub(r'( \- |\-\-+)', ' ', post)
|
||
post = re.sub(r' +', ' ', post)
|
||
post = post.rstrip(' ')
|
||
post = post.split(' ')
|
||
stop_words = set(stopwords.words('english'))
|
||
post_no_stop = [w for w in post if not w in stop_words]
|
||
return post_no_stop
|
||
|
||
def main():
|
||
if len(sys.argv) != 4:
|
||
print("syntax is ./predict.py in.tsv out.tsv model.pkl")
|
||
return
|
||
in_file = sys.argv[1]
|
||
out_file = sys.argv[2]
|
||
model = sys.argv[3]
|
||
with open(model, 'rb') as f:
|
||
pickle_list = pickle.load(f)
|
||
|
||
paranormal_class_logprob = pickle_list[0]
|
||
sceptic_class_logprob = pickle_list[1]
|
||
bigrams_logprobs = pickle_list[2]
|
||
words_logprobs = pickle_list[3]
|
||
total_sceptic_bigram = pickle_list[4]
|
||
total_paranormal_bigram = pickle_list[5]
|
||
total_sceptic_word = pickle_list[6]
|
||
total_paranormal_word = pickle_list[7]
|
||
print(math.log(1/total_sceptic_bigram))
|
||
print(math.log(1/total_paranormal_bigram))
|
||
print(math.log(1/total_sceptic_word))
|
||
print(math.log(1/total_paranormal_word))
|
||
with open(in_file) as in_f, open(out_file, 'w') as out_f:
|
||
for line in in_f:
|
||
hyp = calc_post_class(line, paranormal_class_logprob, sceptic_class_logprob, bigrams_logprobs, words_logprobs, total_sceptic_bigram, total_paranormal_bigram, total_sceptic_word, total_paranormal_word)
|
||
if hyp == 'sceptic':
|
||
out_f.write(' S\n')
|
||
elif hyp == 'paranormal':
|
||
out_f.write(' P\n')
|
||
main()
|