Regression

This commit is contained in:
Bartusiak 2020-04-06 19:11:16 +02:00
parent 72f56d6b42
commit 0e0d33afb4
4 changed files with 294932 additions and 294900 deletions

View File

@ -6,80 +6,95 @@ import re
from pip._vendor.msgpack.fallback import xrange
import random
vocabulary=[]
vocabulary = []
file_to_save = open("test.tsv", "w", encoding='utf-8')
file_to_save=open("test.tsv","w",encoding='utf-8')
def define_vocabulary(file_to_learn_new_words):
word_counts={'count': defaultdict(int)}
with open(file_to_learn_new_words,encoding='utf-8') as in_file:
word_counts = {'count': defaultdict(int)}
with open(file_to_learn_new_words, encoding='utf-8') as in_file:
for line in in_file:
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
word_counts['count'][token]+=1
word_counts['count'][token] += 1
return word_counts
def read_input(file_path):
read_word_counts={'count': defaultdict(int)}
read_word_counts = {'count': defaultdict(int)}
with open(file_path, encoding='utf-8') as in_file:
for line in in_file:
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
read_word_counts['count'][token]+=1
read_word_counts['count'][token] += 1
return read_word_counts
def training(vocabulary,read_input,expected):
learning_rate=0.00001
learning_precision=0.0000001
weights=[]
iteration=0
loss_sum=0.0
ix=1
def training(vocabulary, read_input, expected):
file_to_write = open(expected, 'w+', encoding='utf8')
learning_rate = 0.00001
learning_precision = 0.0000001
weights = []
iteration = 0
loss_sum = 0.0
ix = 1
readed_words_values = []
for word in read_input['count']:
if word not in vocabulary['count']:
read_input['count'][word]=0
read_input['count'][word] = 0
readed_words_values.append(read_input['count'][word])
for ix in range(0,len(vocabulary['count'])+1):
weights.append(random.uniform(-0.001,0.001))
#max_iteration=len(vocabulary['count'])+1
max_iteration=1000
delta=1
while (delta>learning_precision and iteration<max_iteration):
d,y=random.choice(list(read_input['count'].items())) #d-word, y-value of
y_hat=weights[0]
i=0
for ix in range(0, len(vocabulary['count']) + 1):
weights.append(random.uniform(-0.001, 0.001))
# max_iteration=len(vocabulary['count'])+1
max_iteration = 1000
delta = 1
while delta > learning_precision and iteration < max_iteration:
d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of
y_hat = weights[0]
i = 0
for word_d in d:
if word_d in vocabulary['count'].keys():
#print(vocabulary['count'][d])
y_hat+=weights[vocabulary['count'][word_d]]*readed_words_values[i]
delta=abs(y_hat-y)*learning_rate
weights[0]=weights[0]-delta
i+=i
i=0
# print(vocabulary['count'][d])
y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i]
i += 1
if y_hat > 0.0:
file_to_write.write('1\n')
else:
file_to_write.write('0\n')
i = 0
delta = (y_hat - y) * learning_rate
weights[0] = weights[0] - delta
for word_w in d:
if word_w in vocabulary['count'].keys():
weights[vocabulary['count'][word_w]]-=readed_words_values[i]*delta
i+=1
#print(weights)
weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta
i += 1
# print(weights)
print(y_hat)
print(y)
loss=(y_hat-y)**2.0
#loss=(y_hat-y)*(y_hat-y)
loss_sum+=loss
if(iteration%1000==0):
print(loss_sum/1000)
iteration=0
loss_sum=0.0
iteration+=1
loss = (y_hat - y) ** 2.0
# loss=(y_hat-y)*(y_hat-y)
loss_sum += loss
if (iteration % 1000 == 0):
print(loss_sum / 1000)
iteration = 0
loss_sum = 0.0
iteration += 1
file_to_write.close
return weights, vocabulary
def main():
vocabulary = define_vocabulary('train/in.tsv')
readed_words=read_input('dev-0/in.tsv')
training(vocabulary,readed_words,'test.tsv')
readed_words = read_input('dev-0/in.tsv')
readed_words_test_a = read_input('test-A/in.tsv/in.tsv')
training(vocabulary, readed_words, 'test.tsv')
training(vocabulary,readed_words_test_a, 'test_a.tsv')
#def cost_function(y_hat,y):
# def cost_function(y_hat,y):
# loss=(y_hat-y)**2.0
# loss_sum+=loss
# if loss_counter%1000==0:
@ -88,9 +103,8 @@ def main():
# loss_sum=0.0
#def main():
# --------------- initialization ---------------------------------
# def main():
# --------------- initialization ---------------------------------
# vocabulary = define_vocabulary('train/in.tsv')
# readed_words=read_input('dev-0/in.tsv')
# i=1;
@ -109,7 +123,7 @@ def main():
# max_iterations=len(vocabulary['count'])+1
# current_iteration=0
# rangeReadedValues=len(readed_words['count'])+1
# --------------- prediction -------------------------------------
# --------------- prediction -------------------------------------
# while (delta>precision and current_iteration<max_iterations):
# y=random.choice(readed_words_values)
# y_hat=weights[0]
@ -126,4 +140,3 @@ def main():
main()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,19 @@
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0

File diff suppressed because it is too large Load Diff