WSR-432813/P5. Graph-based.ipynb
2021-06-11 01:28:24 +02:00

580 KiB
Raw Blame History

Self made RP3-beta

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
import time
import matplotlib.pyplot as plt

train_read = pd.read_csv("./Datasets/ml-100k/train.csv", sep="\t", header=None)
test_read = pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None)
(
    train_ui,
    test_ui,
    user_code_id,
    user_id_code,
    item_code_id,
    item_id_code,
) = helpers.data_to_csr(train_read, test_read)
class RP3Beta:
    def fit(self, train_ui, alpha, beta):
        """We weight our edges by user's explicit ratings so if user rated movie high we'll follow that path
        with higher probability."""
        self.train_ui = train_ui
        self.train_iu = train_ui.transpose()

        self.alpha = alpha
        self.beta = beta

        # Define Pui
        Pui = sparse.csr_matrix(self.train_ui / self.train_ui.sum(axis=1))

        # Define Piu
        to_divide = np.vectorize(lambda x: x if x > 0 else 1)(
            self.train_iu.sum(axis=1)
        )  # to avoid dividing by zero
        Piu = sparse.csr_matrix(self.train_iu / to_divide)
        item_orders = (self.train_ui > 0).sum(axis=0)

        Pui = Pui.power(self.alpha)
        Piu = Piu.power(self.alpha)

        P3 = Pui * Piu * Pui

        P3 /= np.power(
            np.vectorize(lambda x: x if x > 0 else 1)(item_orders), self.beta
        )

        self.estimations = np.array(P3)

    def recommend(self, user_code_id, item_code_id, topK=10):

        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):

            user_rated = self.train_ui.indices[
                self.train_ui.indptr[nb_user] : self.train_ui.indptr[nb_user + 1]
            ]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result = []
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid] + list(chain(*item_scores[:topK])))
        return result

    def estimate(self, user_code_id, item_code_id, test_ui):
        result = []
        for user, item in zip(*test_ui.nonzero()):
            result.append(
                [
                    user_code_id[user],
                    item_code_id[item],
                    self.estimations[user, item]
                    if not np.isnan(self.estimations[user, item])
                    else 1,
                ]
            )
        return result
model = RP3Beta()
model.fit(train_ui, alpha=1, beta=0)
top_n = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv(
    "Recommendations generated/ml-100k/Self_P3_reco.csv", index=False, header=False
)

estimations = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv(
    "Recommendations generated/ml-100k/Self_P3_estimations.csv",
    index=False,
    header=False,
)
import evaluation_measures as ev

estimations_df = pd.read_csv(
    "Recommendations generated/ml-100k/Self_P3_estimations.csv", header=None
)
reco = np.loadtxt("Recommendations generated/ml-100k/Self_P3_reco.csv", delimiter=",")

ev.evaluate(
    test=pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None),
    estimations_df=estimations_df,
    reco=reco,
    super_reactions=[4, 5],
)
943it [00:00, 6688.11it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR H2R Reco in test Test coverage Shannon Gini
0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.0 0.077201 3.875892 0.974947

Let's check hyperparameters

Alpha
from tqdm import tqdm

result = []
for alpha in tqdm([round(i, 1) for i in np.arange(0.2, 1.6001, 0.2)]):
    model = RP3Beta()
    model.fit(train_ui, alpha=alpha, beta=0)
    reco = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append = ev.evaluate(
        test=pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None),
        estimations_df=estimations_df,
        reco=np.array(reco),
        super_reactions=[4, 5],
    )
    to_append.insert(0, "Alpha", alpha)
    result.append(to_append)

result = pd.concat(result)
result
  0%|          | 0/8 [00:00<?, ?it/s]
0it [00:00, ?it/s]
943it [00:00, 6739.04it/s]
 12%|█▎        | 1/8 [00:14<01:39, 14.21s/it]
0it [00:00, ?it/s]
943it [00:00, 7360.08it/s]
 25%|██▌       | 2/8 [00:27<01:23, 13.94s/it]
0it [00:00, ?it/s]
943it [00:00, 7002.14it/s]
 38%|███▊      | 3/8 [00:40<01:07, 13.42s/it]
0it [00:00, ?it/s]
943it [00:00, 7273.46it/s]
 50%|█████     | 4/8 [00:54<00:54, 13.61s/it]
0it [00:00, ?it/s]
943it [00:00, 7058.66it/s]
 62%|██████▎   | 5/8 [01:08<00:40, 13.66s/it]
0it [00:00, ?it/s]
943it [00:00, 7147.76it/s]
 75%|███████▌  | 6/8 [01:22<00:27, 13.81s/it]
0it [00:00, ?it/s]
943it [00:00, 7094.19it/s]
 88%|████████▊ | 7/8 [01:36<00:13, 13.90s/it]
0it [00:00, ?it/s]
943it [00:00, 7123.37it/s]
100%|██████████| 8/8 [01:49<00:00, 13.73s/it]
Alpha RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR H2R Reco in test Test coverage Shannon Gini
0 0.2 268.177832 211.732649 0.262672 0.166858 0.166277 0.197184 0.187661 0.203252 0.320910 0.196132 0.563378 0.580866 0.850477 0.629905 1.000000 0.060606 3.669627 0.979636
0 0.4 10.546689 7.792373 0.268505 0.172669 0.171569 0.202643 0.192489 0.212653 0.326760 0.200172 0.565148 0.583801 0.854719 0.644751 1.000000 0.064214 3.726996 0.978426
0 0.6 3.143988 2.948790 0.274655 0.180502 0.177820 0.208730 0.198176 0.222746 0.332872 0.203290 0.568872 0.587738 0.870626 0.657476 1.000000 0.065657 3.785282 0.977090
0 0.8 3.670728 3.495735 0.281972 0.189868 0.185300 0.216071 0.203541 0.236751 0.339867 0.206688 0.573729 0.592432 0.874867 0.685048 1.000000 0.070707 3.832415 0.975998
0 1.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.000000 0.077201 3.875892 0.974947
0 1.2 3.704441 3.529251 0.280912 0.193633 0.187311 0.216872 0.203004 0.240588 0.338049 0.203453 0.571830 0.594313 0.883351 0.681866 1.000000 0.085859 3.910718 0.974073
0 1.4 3.704580 3.529388 0.273595 0.190651 0.183874 0.212183 0.199464 0.239118 0.329550 0.195433 0.566171 0.592793 0.871686 0.675504 1.000000 0.107504 3.961915 0.972674
0 1.6 3.704591 3.529399 0.263097 0.186255 0.178709 0.205170 0.191094 0.232920 0.317439 0.184917 0.552349 0.590545 0.868505 0.669141 0.999576 0.156566 4.060156 0.969203
metrics = list(result.columns[[i not in ["Alpha"] for i in result.columns]])

charts_per_row = 6
charts_per_column = 3

fig, axes = plt.subplots(
    nrows=charts_per_row, ncols=charts_per_column, figsize=(18, 7 * charts_per_row)
)
import itertools

to_iter = [
    i for i in itertools.product(range(charts_per_row), range(charts_per_column))
]

for i in range(len(metrics)):
    df = result[["Alpha", metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)
Beta
from tqdm import tqdm

result = []
for beta in tqdm([round(i, 1) for i in np.arange(0, 1, 0.1)]):
    model = RP3Beta()
    model.fit(train_ui, alpha=1, beta=beta)
    reco = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append = ev.evaluate(
        test=pd.read_csv("./Datasets/ml-100k/test.csv", sep="\t", header=None),
        estimations_df=estimations_df,
        reco=np.array(reco),
        super_reactions=[4, 5],
    )
    to_append.insert(0, "Beta", beta)
    result.append(to_append)

result = pd.concat(result)
result
  0%|          | 0/10 [00:00<?, ?it/s]
0it [00:00, ?it/s]
943it [00:00, 7004.93it/s]
 10%|█         | 1/10 [00:13<02:05, 13.94s/it]
0it [00:00, ?it/s]
943it [00:00, 7040.39it/s]
 20%|██        | 2/10 [00:27<01:51, 13.96s/it]
0it [00:00, ?it/s]
943it [00:00, 7120.98it/s]
 30%|███       | 3/10 [00:41<01:37, 13.91s/it]
0it [00:00, ?it/s]
943it [00:00, 7008.88it/s]
 40%|████      | 4/10 [00:55<01:22, 13.80s/it]
0it [00:00, ?it/s]
943it [00:00, 7150.83it/s]
 50%|█████     | 5/10 [01:09<01:09, 13.83s/it]
0it [00:00, ?it/s]
943it [00:00, 7015.22it/s]
 60%|██████    | 6/10 [01:23<00:55, 13.81s/it]
0it [00:00, ?it/s]
943it [00:00, 5796.64it/s]
 70%|███████   | 7/10 [01:36<00:40, 13.57s/it]
0it [00:00, ?it/s]
943it [00:00, 7097.47it/s]
 80%|████████  | 8/10 [01:50<00:27, 13.72s/it]
0it [00:00, ?it/s]
943it [00:00, 7280.32it/s]
 90%|█████████ | 9/10 [02:03<00:13, 13.75s/it]
0it [00:00, ?it/s]
943it [00:00, 6231.86it/s]
100%|██████████| 10/10 [02:17<00:00, 13.73s/it]
Beta RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR H2R Reco in test Test coverage Shannon Gini
0 0.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.000000 0.077201 3.875892 0.974947
0 0.1 3.703312 3.528128 0.290138 0.197597 0.192259 0.223336 0.210944 0.246153 0.347768 0.212034 0.581038 0.596328 0.884411 0.695652 1.000000 0.085137 3.957416 0.972784
0 0.2 3.703825 3.528636 0.297137 0.201202 0.196067 0.228169 0.218026 0.252767 0.355655 0.219909 0.588904 0.598160 0.886532 0.697773 1.000000 0.094517 4.053212 0.969980
0 0.3 3.704130 3.528939 0.303499 0.204749 0.199901 0.232829 0.225107 0.260797 0.363757 0.226825 0.599969 0.599964 0.888653 0.707317 1.000000 0.105339 4.147779 0.966948
0 0.4 3.704313 3.529120 0.308908 0.208811 0.203854 0.237241 0.229614 0.266918 0.370758 0.232673 0.609385 0.602014 0.895016 0.718982 0.999894 0.132035 4.259682 0.962989
0 0.5 3.704422 3.529229 0.314316 0.211411 0.206768 0.240986 0.237124 0.273416 0.378307 0.239297 0.622792 0.603327 0.903499 0.724284 0.999046 0.168831 4.411281 0.956648
0 0.6 3.704488 3.529295 0.314634 0.206209 0.204818 0.240159 0.242489 0.273850 0.376438 0.238428 0.622042 0.600721 0.897137 0.720042 0.996394 0.212843 4.621938 0.945932
0 0.7 3.704528 3.529335 0.304136 0.187298 0.191990 0.228749 0.238305 0.256201 0.358807 0.226808 0.593897 0.591207 0.868505 0.693531 0.983033 0.256854 4.898568 0.928065
0 0.8 3.704552 3.529360 0.266384 0.147571 0.158660 0.194838 0.214485 0.209336 0.299850 0.184356 0.492852 0.571152 0.803818 0.604454 0.936373 0.341270 5.257397 0.895882
0 0.9 3.704567 3.529375 0.162354 0.076967 0.089233 0.114583 0.134657 0.113253 0.160868 0.085486 0.243590 0.535405 0.580064 0.400848 0.800106 0.415584 5.563910 0.857396
metrics = list(result.columns[[i not in ["Beta"] for i in result.columns]])

charts_per_row = 6
charts_per_column = 3

fig, axes = plt.subplots(
    nrows=charts_per_row, ncols=charts_per_column, figsize=(18, 7 * charts_per_row)
)
import itertools

to_iter = [
    i for i in itertools.product(range(charts_per_row), range(charts_per_column))
]

for i in range(len(metrics)):
    df = result[["Beta", metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)

Check sample recommendations

train = pd.read_csv(
    "./Datasets/ml-100k/train.csv",
    sep="\t",
    header=None,
    names=["user", "item", "rating", "timestamp"],
)
items = pd.read_csv("./Datasets/ml-100k/movies.csv")

user = random.choice(list(set(train["user"])))

train_content = pd.merge(train, items, left_on="item", right_on="id")
display(
    train_content[train_content["user"] == user][
        ["user", "rating", "title", "genres"]
    ].sort_values(by="rating", ascending=False)[:15]
)

reco = np.loadtxt("Recommendations generated/ml-100k/Self_P3_reco.csv", delimiter=",")
items = pd.read_csv("./Datasets/ml-100k/movies.csv")

# Let's ignore scores - they are not used in evaluation:
reco_users = reco[:, :1]
reco_items = reco[:, 1::2]
# Let's put them into one array
reco = np.concatenate((reco_users, reco_items), axis=1)

# Let's rebuild it user-item dataframe
recommended = []
for row in reco:
    for rec_nb, entry in enumerate(row[1:]):
        recommended.append((row[0], rec_nb + 1, entry))
recommended = pd.DataFrame(recommended, columns=["user", "rec_nb", "item"])

recommended_content = pd.merge(recommended, items, left_on="item", right_on="id")
recommended_content[recommended_content["user"] == user][
    ["user", "rec_nb", "title", "genres"]
].sort_values(by="rec_nb")
user rating title genres
37092 169 5 Contact (1997) Drama, Sci-Fi
3058 169 5 Star Wars (1977) Action, Adventure, Romance, Sci-Fi, War
60433 169 5 Singin' in the Rain (1952) Musical, Romance
50247 169 5 M*A*S*H (1970) Comedy, War
73459 169 5 All About Eve (1950) Drama
15015 169 5 Peacemaker, The (1997) Action, Thriller, War
18355 169 5 Edge, The (1997) Adventure, Thriller
20398 169 5 Return of the Jedi (1983) Action, Adventure, Romance, Sci-Fi, War
40029 169 5 Rear Window (1954) Mystery, Thriller
66194 169 5 In the Line of Fire (1993) Action, Thriller
25627 169 5 Citizen Kane (1941) Drama
27344 169 5 Empire Strikes Back, The (1980) Action, Adventure, Drama, Romance, Sci-Fi, War
29621 169 4 Bridge on the River Kwai, The (1957) Drama, War
60206 169 4 Birds, The (1963) Horror
41351 169 4 Gone with the Wind (1939) Drama, Romance, War
user rec_nb title genres
4481 169.0 1 Air Force One (1997) Action, Thriller
1012 169.0 2 English Patient, The (1996) Drama, Romance, War
6989 169.0 3 Fargo (1996) Crime, Drama, Thriller
4788 169.0 4 Titanic (1997) Action, Drama, Romance
1729 169.0 5 Scream (1996) Horror, Thriller
731 169.0 6 Silence of the Lambs, The (1991) Drama, Thriller
5285 169.0 7 Liar Liar (1997) Comedy
5076 169.0 8 Full Monty, The (1997) Comedy
3096 169.0 9 Toy Story (1995) Animation, Children's, Comedy
6097 169.0 10 L.A. Confidential (1997) Crime, Film-Noir, Mystery, Thriller

project task 5: generate recommendations of RP3Beta for hyperparameters found to optimize recall

# We generated recommendations for P3, a special case of RP3Beta (with alpha=1, beta=0).
# We've observed that changing alpha and beta impacts the model performance.

# Your task is find values alpha and beta for which recall will be the highest 
# (any solution with recall higher than P3 will be accepted)
# train the model and generate recommendations.

# save the outptut in 'Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_RP3Beta_reco.csv'

import evaluation_measures as ev

model=RP3Beta()
model.fit(train_ui, alpha=1, beta=0) #check recall values for alpha=1, beta = 0
model_reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
model_reco.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', index=False, header=False)
estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations_df.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', index=False, header=False)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 7035.65it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR H2R Reco in test Test coverage Shannon Gini
0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 0.685048 1.0 0.077201 3.875892 0.974947
import evaluation_measures as ev

model=RP3Beta()
model.fit(train_ui, alpha=0.6, beta=0.5) #check recall values for alpha=0.6, beta = 0.5
model_reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
model_reco.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', index=False, header=False)
estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations_df.to_csv('Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv', index=False, header=False)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_RP3Beta_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 6914.18it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR H2R Reco in test Test coverage Shannon Gini
0 3.657073 3.481191 0.316543 0.213824 0.208731 0.24308 0.235515 0.272396 0.383442 0.245543 0.627971 0.604552 0.903499 0.725345 1.0 0.125541 4.347845 0.95941

project task 6 (optional): implement graph-based model of your choice

# for example change length of paths in RP3beta or make some other modification (but change more than input and hyperparameters)
# feel free to implement your idea or search for some ideas

# save the outptut in 'Recommendations generated/ml-100k/Self_GraphTask_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_GraphTask_reco.csv'