18 KiB
Modelowanie języka
09. Zanurzenia słów (Word2vec) [wykład]
Filip Graliński (2022)
Zanurzenia słów (Word2vec)
W praktyce stosowalność słowosieci okazała się zaskakująco ograniczona. Większy przełom w przetwarzaniu języka naturalnego przyniosły wielowymiarowe reprezentacje słów, inaczej: zanurzenia słów.
„Wymiary” słów
Moglibyśmy zanurzyć (ang. _embed) w wielowymiarowej przestrzeni, tzn. zdefiniować odwzorowanie $E \colon V \rightarrow \mathcal{R}^m$ dla pewnego $m$ i określić taki sposób estymowania prawdopodobieństw $P(u|v)$, by dla par $E(v)$ i $E(v')$ oraz $E(u)$ i $E(u')$ znajdujących się w pobliżu (według jakiejś metryki odległości, na przykład zwykłej odległości euklidesowej):
$$P(u|v) \approx P(u'|v').$$
$E(u)$ nazywamy zanurzeniem (embeddingiem) słowa.
Wymiary określone z góry?
Można by sobie wyobrazić, że $m$ wymiarów mogłoby być z góry określonych przez lingwistę. Wymiary te byłyby związane z typowymi „osiami” rozpatrywanymi w językoznawstwie, na przykład:
- czy słowo jest wulgarne, pospolite, potoczne, neutralne czy książkowe?
- czy słowo jest archaiczne, wychodzące z użycia czy jest neologizmem?
- czy słowo dotyczy kobiet, czy mężczyzn (w sensie rodzaju gramatycznego i/lub socjolingwistycznym)?
- czy słowo jest w liczbie pojedynczej czy mnogiej?
- czy słowo jest rzeczownikiem czy czasownikiem?
- czy słowo jest rdzennym słowem czy zapożyczeniem?
- czy słowo jest nazwą czy słowem pospolitym?
- czy słowo opisuje konkretną rzecz czy pojęcie abstrakcyjne?
- …
W praktyce okazało się jednak, że lepiej, żeby komputer uczył się sam możliwych wymiarów — z góry określamy tylko $m$ (liczbę wymiarów).
Bigramowy model języka oparty na zanurzeniach
Zbudujemy teraz najprostszy model język oparty na zanurzeniach. Będzie to właściwie najprostszy neuronowy model języka, jako że zbudowany model można traktować jako prostą sieć neuronową.
Słownik
W typowym neuronowym modelu języka rozmiar słownika musi być z góry
ograniczony. Zazwyczaj jest to liczba rzędu kilkudziesięciu wyrazów —
po prostu będziemy rozpatrywać $|V|$ najczęstszych wyrazów, pozostałe zamienimy
na specjalny token <unk>
reprezentujący nieznany (_unknown) wyraz.
Aby utworzyć taki słownik, użyjemy gotowej klasy Vocab
z pakietu torchtext:
from itertools import islice
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
import pickle
import lzma
from itertools import islice
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
import lzma
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
def get_word_lines_from_file(file_name):
with lzma.open(file_name, 'r') as fh:
for line in fh:
yield get_words_from_line(line.decode('utf-8'))
vocab_size = 20000
vocab = build_vocab_from_iterator(
get_word_lines_from_file('train/in.tsv.xz'),
max_tokens = vocab_size,
specials = ['<unk>'])
vocab['human']
1027
vocab.lookup_tokens([0, 1, 2, 10, 12345])
['<unk>', '\\\\', 'the', '-\\\\', 'nmighty']
with open('vocabulary.pickle', 'wb') as fh:
pickle.dump(vocab, fh)
Definicja sieci
Naszą prostą sieć neuronową zaimplementujemy używając frameworku PyTorch.
from torch import nn
import torch
embed_size = 100
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size)
vocab.set_default_index(vocab['<unk>'])
ixs = torch.tensor(vocab.forward(['is']))
out = model(ixs)
out[0][vocab['the']]
/Users/jacob/opt/anaconda3/lib/python3.9/site-packages/torch/nn/modules/container.py:217: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. input = module(input)
tensor(2.9869e-05, grad_fn=<SelectBackward0>)
Teraz wyuczmy model. Wpierw tylko potasujmy nasz plik:
shuf < opensubtitlesA.pl.txt > opensubtitlesA.pl.shuf.txt
from torch.utils.data import IterableDataset
import itertools
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
train_dataset = Bigrams('train/in.tsv.xz', vocab_size)
from torch.utils.data import DataLoader
next(iter(train_dataset))
(43, 0)
from torch.utils.data import DataLoader
next(iter(DataLoader(train_dataset, batch_size=5)))
[tensor([ 2, 5, 51, 3481, 231]), tensor([ 5, 51, 3481, 231, 4])]
device = 'cpu'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=5000)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model1.bin')
None
Policzmy najbardziej prawdopodobne kontynuacje dla zadanego słowa:
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward(['dla'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
list(zip(top_words, top_indices, top_probs))
[('ciebie', 73, 0.1580502986907959), ('mnie', 26, 0.15395283699035645), ('<unk>', 0, 0.12862136960029602), ('nas', 83, 0.0410110242664814), ('niego', 172, 0.03281523287296295), ('niej', 245, 0.02104802615940571), ('siebie', 181, 0.020788608118891716), ('którego', 365, 0.019379809498786926), ('was', 162, 0.013852755539119244), ('wszystkich', 235, 0.01381855271756649)]
Teraz zbadajmy najbardziej podobne zanurzenia dla zadanego słowa:
vocab = train_dataset.vocab
ixs = torch.tensor(vocab.forward(['kłopot'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
list(zip(top_words, top_indices, top_probs))
[('.', 3, 0.404473215341568), (',', 4, 0.14222915470600128), ('z', 14, 0.10945753753185272), ('?', 6, 0.09583134204149246), ('w', 10, 0.050338443368673325), ('na', 12, 0.020703863352537155), ('i', 11, 0.016762692481279373), ('<unk>', 0, 0.014571071602404118), ('...', 15, 0.01453721895813942), ('</s>', 1, 0.011769450269639492)]
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
embeddings = model.model[0].weight
vec = embeddings[vocab['poszedł']]
similarities = cos(vec, embeddings)
top = torch.topk(similarities, 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
list(zip(top_words, top_indices, top_probs))
[('poszedł', 1087, 1.0), ('idziesz', 1050, 0.4907470941543579), ('przyjeżdża', 4920, 0.45242372155189514), ('pojechałam', 12784, 0.4342481195926666), ('wrócił', 1023, 0.431664377450943), ('dobrać', 10351, 0.4312002956867218), ('stałeś', 5738, 0.4258835017681122), ('poszła', 1563, 0.41979148983955383), ('trafiłam', 18857, 0.4109022617340088), ('jedzie', 1674, 0.4091658890247345)]
Zapis przy użyciu wzoru matematycznego
Powyżej zaprogramowaną sieć neuronową można opisać następującym wzorem:
$$\vec{y} = \operatorname{softmax}(CE(w_{i-1}),$$
gdzie:
- $w_{i-1}$ to pierwszy wyraz w bigramie (poprzedzający wyraz),
- $E(w)$ to zanurzenie (embedding) wyrazy $w$ — wektor o rozmiarze $m$,
- $C$ to macierz o rozmiarze $|V| \times m$, która rzutuje wektor zanurzenia w wektor o rozmiarze słownika,
- $\vec{y}$ to wyjściowy wektor prawdopodobieństw o rozmiarze $|V|$.
Hiperparametry
Zauważmy, że nasz model ma dwa hiperparametry:
- $m$ — rozmiar zanurzenia,
- $|V|$ — rozmiar słownika, jeśli zakładamy, że możemy sterować
rozmiarem słownika (np. przez obcinanie słownika do zadanej liczby
najczęstszych wyrazów i zamiany pozostałych na specjalny token, powiedzmy,
<UNK>
.
Oczywiście możemy próbować manipulować wartościami $m$ i $|V|$ w celu polepszenia wyników naszego modelu.
Pytanie: dlaczego nie ma sensu wartość $m \approx |V|$ ? dlaczego nie ma sensu wartość $m = 1$?
Diagram sieci
Jako że mnożenie przez macierz ($C$) oznacza po prostu zastosowanie warstwy liniowej, naszą sieć możemy interpretować jako jednowarstwową sieć neuronową, co można zilustrować za pomocą następującego diagramu:
Zanurzenie jako mnożenie przez macierz
Uzyskanie zanurzenia ($E(w)$) zazwyczaj realizowane jest na zasadzie odpytania (look-up_). Co ciekawe, zanurzenie można intepretować jako mnożenie przez macierz zanurzeń (embeddingów) $E$ o rozmiarze $m \times |V|$ — jeśli słowo będziemy na wejściu kodowali przy użyciu wektora z gorącą jedynką (one-hot encoding_), tzn. słowo $w$ zostanie podane na wejściu jako wektor $\vec{1_V}(w) = [0,\ldots,0,1,0\ldots,0]$ o rozmiarze $|V|$ złożony z samych zer z wyjątkiem jedynki na pozycji odpowiadającej indeksowi wyrazu $w$ w słowniku $V$.
Wówczas wzór przyjmie postać:
$$\vec{y} = \operatorname{softmax}(CE\vec{1_V}(w_{i-1})),$$
gdzie $E$ będzie tym razem macierzą $m \times |V|$.
Pytanie: czy $\vec{1_V}(w)$ intepretujemy jako wektor wierszowy czy kolumnowy?
W postaci diagramu można tę interpretację zilustrować w następujący sposób: